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I. Abstract 
 

The cross-product operation on two vectors is a well-known operation that is applicable to 
physics. The operation is a vector product which yields a third vector that is orthogonal to the 
original two vectors and has a magnitude of the product of the magnitudes of the two individual 
vectors multiplied by the sine of the angle between the two vectors. It is an extraordinarily useful 
formula in physics which allows us to describe torque and angular momentum essentially giving 
us understanding of how 3-dimensional rotations work, with the well-known formula: 
torque(scalar) = |𝑟||𝐹| sin 𝜃 or torque(vector)= r × F. It is also used in the computation of the 
curl of vector fields. However, while the cross product is useful for 3-dimensions, it cannot be 
applied to 4-dimensional or any higher-dimensional rotations. The task of this study was to find a 
formula which like the cross product can be used to describe rotations in 4-dimensional 
Euclidean space, as well as the generalization of this idea to any n-dimensional Euclidean space. 
A formula was found with properties similar to the cross product, which will be called the 4-
hypercross product. This formula can be extended to n-dimensional Euclidean spaces where n is 
any natural number greater than or equal to 2, creating the n-hypercross product. 

 

II. Introduction 

While it may seem mysterious at first, the reason why there is no cross product in 4-
dimensional spaces, in other words, why the cross product cannot be applied to 4-dimensions, is 
because of the fact that rotations occur around an axis in 3 dimensions, and around a plane in 4 
dimensions. In fact, rotations occur around the 𝑛 − 2 dimensional hyperplane for any dimension 
n (point for 2 dimensions, line for 3 dimensions, plane for 4 dimensions, 3-hyperplane for 5 
dimensions, etc.). So, the cross product which yields a vector must be modified to yield the 2 and 
higher-dimensional analogue, a matrix. A 3 × 1 vector is yielded for the cross product since it is 
a line that exists in a 3-dimensional space. Since we are now searching for a plane that exists in a 



4-dimensional space, we seek a 4 × 2  matrix for the 4-hypercross product. The matrix that we 
are seeking should be of the form: 

 

ቌ

𝑥ଵ 𝑦ଵ

𝑥ଶ 𝑦ଶ
𝑥ଷ 𝑦ଷ

𝑥ସ 𝑦ସ

ቍ 

We will use a new symbol to define this hypercross product between two vectors, 𝑎⃗  and 𝑏ሬ⃗ , 

(which are 4 × 1  vectors) which will be 𝑎⃗  𝑏ሬ⃗ , so  

 

𝑎⃗ 𝑏ሬ⃗  =  

ቌ

𝑥ଵ 𝑦ଵ

𝑥ଶ 𝑦ଶ
𝑥ଷ 𝑦ଷ

𝑥ସ 𝑦ସ

ቍ 

 

 

 

III. Linear Algebra 

In order to find a similar operation to the cross product in 4 dimensions, we need to find the 
orthogonal complement of the two vectors in ℝସ that represent the rotation (the arm and the 
motion vector, or the arm and the force vector). In order to do this, we use the concepts of image 
and kernel from linear algebra.  

In mathematics, the image of a linear transformation or a matrix transformation consists of 
all the values the transformation takes in its target space. It is essentially the span of the 
concatenated vectors making up the matrix, where the span of all possible values for a location 
that the sum of scalar multiples of the vectors can take up in space. The kernel of a linear 
transformation on the other hand is related to the original space of the linear transformation, not 
the target space. It is defined as all subsets of the domain of ℝ௠ in a linear transformation from 
ℝ௠ to ℝ௡ which map to the 0 vector of ℝ௡. In other words, the kernel of a matrix A is the 

solution of the linear system 𝐴𝑥⃗ = 0ሬ⃗ . To solve for the kernel of a matrix we solve that linear 
system. 

We need a few more concepts in order to start deriving this 4-hypercross product. An 
operation that can be performed on any two 𝑛 × 1   vectors is the dot product. The dot product is 
defined as: 



𝑎⃗ ∙ 𝑏ሬ⃗ =  ∑ 𝑎௜𝑏௜
௡
௜ୀଵ  , 

The dot product gives a scalar which is equal to: 

|𝑎⃗||𝑏ሬ⃗ | cos 𝜃 

Where 𝜃 is the angle between the two vectors. Thus, the dot product of two perpendicular 
vectors is 0.  The matrix product of two matrices, 𝑛 × 𝑝 and 𝑝 × 𝑚 is a product which yields a 
third matrix that is 𝑛 × 𝑚. If 𝐴 and 𝐵 are matrices of the aforementioned properties with 
arbitrary entries, 𝐶 = 𝐴𝐵 in the manner such that: 

 

𝐴 = ቎

𝑎ଵଵ 𝑎ଵଶ   
𝑎ଶଵ 𝑎ଶଶ   

… 𝑎ଵ௣

… .
. … .

𝑎௡ଵ … 
… … .

… 𝑎௡௣

቏ 𝐵 = ቎

𝑏ଵଵ 𝑏ଵଶ   
𝑏ଶଵ 𝑏ଶଶ   

… . . 𝑏ଵ௠

… . .
. … .

𝑏௣ଵ … 
… … . . .

… 𝑏௣௠

቏  

 

𝐶 = ቎

𝑐ଵଵ 𝑐ଵଶ   
𝑐ଶଵ 𝑐ଶଶ   

… . . 𝑐ଵ௠

… . .
. … .

𝑐௡ଵ … 
… … . . .

… 𝑐௡௠

቏ 

𝑐௜௝ =  ෍ 𝑎௜௞𝑏௞௝

௣

௞ୀଵ
 

The transpose of a matrix 𝐴் is a matrix whose ij-th entry is the ji-th entry of 𝐴. For example, the 

transpose of the matrix 𝐴 = ቂ
4 −4   
3 2  

8 −9
13 1

ቃ is 𝐴் = ቎

4 3   
−4 2  
8 13

−9 1

቏ .  

    Applying the concept of the transpose to a vector, we find that the transpose of a column 
vector is just a row vector. This is illustrated here: 

𝑎⃗ = ൥
4
8
7

൩    𝑎்ሬሬሬሬ⃗ = [4      8     7]     

Using this fact, we find that for two column vectors in ℝ௡, their dot product is just the matrix 
product of the transpose of the first vector and the second vector.  

𝑣⃗  ∙ 𝑤ሬሬ⃗ = 𝑣்ሬሬሬሬ⃗  𝑤ሬሬ⃗  

The crucial link that will lead us to derive the hypercross-product is the notion of the 
orthogonal complement of a subspace of ℝ௡. This is defined as the region of ℝ௡ that contains all 



vectors that are perpendicular to the vectors in the image of a matrix 𝐴. Suppose 𝑉 = 𝑖𝑚(𝐴) is a 
subspace of ℝ௡.  

𝐴 =  [ 𝑣ଵሬሬሬሬ⃗ 𝑣ଶሬሬሬሬ⃗    𝑣ଷሬሬሬሬ⃗ … .   … . 𝑣௠ሬሬሬሬሬ⃗ ] 

The orthogonal complement 𝑉ୄ must satisfy the following property: 

𝑉ୄ = 𝑎𝑙𝑙 𝑥 ሬሬሬ⃗  𝑖𝑛 ℝ௡ such that 𝑣పሬሬሬ⃗ ∙  𝑥 ሬሬሬ⃗ = 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,3. . 𝑚 

𝑉ୄ = 𝑎𝑙𝑙 𝑥 ሬሬሬ⃗  𝑖𝑛 ℝ௡ such that   𝑣ప
்ሬሬሬሬሬሬ⃗  𝑥 ሬሬሬ⃗ = 0    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,3. . 𝑚    

 

So we can say that 𝑉ୄ = 𝑖𝑚(𝐴) ୄ is just the kernel of the matrix: 

𝐴் =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡  𝑣ଵ

்ሬሬሬሬሬሬሬ⃗

 𝑣ଶ
்

. .

. .

. .

ሬሬሬሬሬሬሬ⃗

 𝑣௠
்ሬሬሬሬሬሬሬሬ⃗ ⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

This proves the theorem that given a matrix 𝐴 

𝑖𝑚(𝐴) ୄ = ker (𝐴்) 

 

Where ker() denotes the kernel of a matrix. Given that we are searching for the orthogonal 
complement of the two rotation vectors (the arm and the motion vector), to find the hypercross 
product we find the kernel of the transpose of the matrix that is the concatenation of these two 
vectors. This will give us a matrix that spans the orthogonal complement of the rotation vectors, 
giving us the hyperplane of rotation. So, the hypercross product is essentially the kernel of the 
transpose of a general 4 × 2 matrix (note that this method can be used to generate the cross 
product of two 3 × 1 vectors as well). 

 

IV. Derivation and Verification 

We start by defining the two vectors that are being hypercrossed: 

𝑎⃗ = ൦

𝑎ଵ

𝑎ଶ

𝑎ଷ

𝑎ସ

൪           𝑏ሬ⃗ = ൦

𝑏ଵ

𝑏ଶ

𝑏ଷ

𝑏ସ

൪  

We define the matrix 𝐾 which is the concatenation of these two vectors in ℝସ, and its transpose. 



𝐾 =  ൦

𝑎ଵ

𝑎ଶ

𝑎ଷ

𝑎ସ

  

 𝑏ଵ

𝑏ଶ

𝑏ଷ

𝑏ସ

൪     𝐾் =  ቂ
𝑎ଵ 𝑎ଶ   
 𝑏ଵ 𝑏ଶ  

𝑎ଷ 𝑎ସ

 𝑏ଷ  𝑏ସ
ቃ 

To find ker (𝐾்) we solve the linear system  

𝐾்𝑥 ሬሬሬ⃗ = 0 ሬሬሬ⃗  

ቂ
𝑎ଵ 𝑎ଶ   
 𝑏ଵ 𝑏ଶ  

𝑎ଷ 𝑎ସ

 𝑏ଷ  𝑏ସ
ቃ ቎

𝑥ଵ

𝑥ଶ

𝑥ଷ
𝑥ସ

቏ = ቂ
0
0

ቃ  

First divide the first row by 𝑎ଵ to get: 

 

൥
1

𝑎ଶ

𝑎ଵ
   

 𝑏ଵ 𝑏ଶ  

𝑎ଷ

𝑎ଵ

𝑎ସ

𝑎ଵ
    |    0

 𝑏ଷ  𝑏ସ    |    0
    ൩  

 

Subtract  𝑏ଵ times the first row from the second row to get: 

⎣
⎢
⎢
⎡1

𝑎ଶ

𝑎ଵ
   

0 𝑏ଶ −
 𝑏ଵ𝑎ଶ

𝑎ଵ
  

𝑎ଷ

𝑎ଵ
           

𝑎ସ

𝑎ଵ
         |    0

 𝑏ଷ −
 𝑏ଵ𝑎ଷ

𝑎ଵ
 𝑏ସ −

 𝑏ଵ𝑎ସ

𝑎ଵ
    |    0

    

⎦
⎥
⎥
⎤

  

 

Divide the second row by 𝑏ଶ −
 ௕భ௔మ

௔భ
 : 

⎣
⎢
⎢
⎢
⎢
⎡

1
𝑎ଶ

𝑎ଵ
   

0 1  

𝑎ଷ

𝑎ଵ
           

𝑎ସ

𝑎ଵ
         |    0

 𝑏ଷ −
 𝑏ଵ𝑎ଷ

𝑎ଵ

𝑏ଶ −
 𝑏ଵ𝑎ଶ

𝑎ଵ

 𝑏ସ −
 𝑏ଵ𝑎ସ

𝑎ଵ

𝑏ଶ −
 𝑏ଵ𝑎ଶ

𝑎ଵ

    |    0
    

⎦
⎥
⎥
⎥
⎥
⎤

  

We now subtract 
௔మ

௔భ
 times the second row from the first row: 



⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1 0   
0 1  

𝑎ଷ

𝑎ଵ
−

𝑎ଶ

𝑎ଵ
(
 𝑏ଷ −

 𝑏ଵ𝑎ଷ

𝑎ଵ

𝑏ଶ −
 𝑏ଵ𝑎ଶ

𝑎ଵ

)            
𝑎ସ

𝑎ଵ
−

𝑎ଶ

𝑎ଵ
(
 𝑏ସ −

 𝑏ଵ𝑎ସ

𝑎ଵ

𝑏ଶ −
 𝑏ଵ𝑎ଶ

𝑎ଵ

)         |    0

 𝑏ଷ −
 𝑏ଵ𝑎ଷ

𝑎ଵ

𝑏ଶ −
 𝑏ଵ𝑎ଶ

𝑎ଵ

                   
 𝑏ସ −

 𝑏ଵ𝑎ସ

𝑎ଵ

𝑏ଶ −
 𝑏ଵ𝑎ଶ

𝑎ଵ

                     |    0

    

⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

This can be simplified to: 

⎣
⎢
⎢
⎢
⎡

1 0   
0 1  

𝑎ଷ

𝑎ଵ
− (

 𝑎ଶ𝑏ଷ −
 𝑎ଶ𝑏ଵ𝑎ଷ

𝑎ଵ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
)            

𝑎ସ

𝑎ଵ
− (

 𝑎ଶ𝑏ସ −
 𝑎ଶ𝑏ଵ𝑎ସ

𝑎ଵ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
)         |    0

 𝑎ଵ𝑏ଷ −  𝑎ଷ𝑏ଵ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
                   

 𝑎ଵ𝑏ସ −  𝑎ସ𝑏ଵ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
                     |    0

    

⎦
⎥
⎥
⎥
⎤

 

 

We find our solution to be:  

቎

𝑥ଵ

𝑥ଶ

𝑥ଷ
𝑥ସ

቏ = 𝑠

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
൮

 𝑎ଶ𝑏ଷ −
 𝑎ଶ𝑏ଵ𝑎ଷ

𝑎ଵ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
൲ −

𝑎ଷ

𝑎ଵ

  𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

1
0 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

+ 𝑡

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
൮

 𝑎ଶ𝑏ସ −
 𝑎ଶ𝑏ଵ𝑎ସ

𝑎ଵ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
൲ −

𝑎ସ

𝑎ଵ

 𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

0
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

The solution space is the span of these two vectors. We can concatenate them to get a matrix: 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
൮

 𝑎ଶ𝑏ଷ −
 𝑎ଶ𝑏ଵ𝑎ଷ

𝑎ଵ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
൲ −

𝑎ଷ

𝑎ଵ

  𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

1
0

           

൮
 𝑎ଶ𝑏ସ −

 𝑎ଶ𝑏ଵ𝑎ସ

𝑎ଵ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
൲ −

𝑎ସ

𝑎ଵ

 𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

0
1 ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

Scale the matrix by a factor of 𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ to get: 

 

൦

 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ

 𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

0

           

 𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ

 𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ

0
𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

൪ 



This is the orthogonal complement of the vectors 𝑎⃗ and 𝑏ሬ⃗ . We define the hypercross product of 

vectors 𝑎⃗ and 𝑏ሬ⃗   

𝑎⃗ 𝑏ሬ⃗  = ൦

 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ

 𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

0

           

 𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ

 𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ

0
𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

൪ 

We have found the orthogonal complement, but we still do not know the area spanned by the 
parallelogram that is formed by these two concatenated vectors. To find the area spanned by the 
vectors of a non-square matrix, we use the formula for a parallelepiped of order 𝑚 spanned by 𝑚 
vectors in ℝ௡. The m-volume is: 

 

ඥdet(𝐴்𝐴) 

We must find the matrix product of the 4-hypercross product matrix and is transpose, find the 
determinant of this matrix, and then find the square root of this determinant. First, perform 

matrix multiplication on the matrices 𝐴் and 𝐴 = 𝑎⃗ 𝑏ሬ⃗   : 

 

𝐴்𝐴

=  ൤
 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ  𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ   
 𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ  𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ  

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ  0        
0  𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

 ൨ ൦

 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ

 𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

0

           

 𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ

 𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ

0
𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ

൪ 

=  

൤
( 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ)ଶ +  (𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ)ଶ + (𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ଶ  (𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ)( 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ) + ( 𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ)( 𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ)

 (𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ)( 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ) + ( 𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ)( 𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ)  (𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ)ଶ +  (𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ)ଶ + (𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ଶ ൨ 

 

The determinant of this matrix is then computed: 

 

det(𝐴்𝐴) =  

(( 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ)ଶ + ( 𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ)ଶ + (𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ଶ)( (𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ)ଶ +  (𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ)ଶ + (𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ଶ) 

− ((𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ)( 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ) + ( 𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ)( 𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ))ଶ  

 

We do lots of algebra and expansion to simplify this expression to: 

 



det ቀ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቁ

= (𝑎
1

𝑏2 −  𝑎2𝑏
1

)2((𝑎
1

𝑏2 −  𝑎2𝑏
1

)2 + ( 𝑎3𝑏
1

−  𝑎1𝑏
3

)2 + ( 𝑎2𝑏
3

− 𝑎3𝑏
2

)2 +   (𝑎
4

𝑏
1

−  𝑎1𝑏
4

)2

+  (𝑎
2

𝑏
4

− 𝑎4𝑏
2

)2 +  (𝑎
4

𝑏
3

− 𝑎3𝑏
4

)2)  

 

Using the Pythagorean theorem and knowledge of the dot product, we can find |𝑎⃗||𝑏ሬ⃗ | sin 𝜃: 

 

|𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ = |𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ sinଶ 𝜃 +  |𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ cosଶ 𝜃 

|𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ sinଶ 𝜃 =  |𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ − |𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ cosଶ 𝜃 

|𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ sinଶ 𝜃 = |𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ − (𝑎⃗ ∙  𝑏ሬ⃗ )ଶ 

So, we square the magnitudes of the vectors and subtract the square of their dot product to get: 

 

|𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ sinଶ 𝜃 = 

(𝑎ଵ
ଶ + 𝑎ଶ

ଶ + 𝑎ଷ
ଶ + 𝑎ସ

ଶ)൫𝑏ଵ
ଶ + 𝑏ଶ

ଶ + 𝑏ଷ
ଶ + 𝑏ସ

ଶ൯ − (𝑎ଵ𝑏ଵ + 𝑎ଶ𝑏ଶ + 𝑎ଷ𝑏ଷ + 𝑎ସ𝑏ସ)ଶ 

=  (𝑎
1

𝑏2 −  𝑎2𝑏
1

)2 + ( 𝑎3𝑏
1

−  𝑎1𝑏
3

)2 + ( 𝑎2𝑏
3

− 𝑎3𝑏
2

)2 +   (𝑎
4

𝑏
1

−  𝑎1𝑏
4

)2 +  (𝑎
2

𝑏
4

− 𝑎4𝑏
2

)2 +  (𝑎
4

𝑏
3

− 𝑎3𝑏
4

)2 

 

Noticing the similarities between the determinant and this expression, we have found the 
equation: 

|𝑎⃗|ଶ|𝑏ሬ⃗ |ଶ sinଶ 𝜃 =
det ቀ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቁ

(𝑎
1

𝑏2 −  𝑎2𝑏
1

)2
  

Take the square root on both sides to get:  

|𝑎⃗||𝑏ሬ⃗ | sin 𝜃 =  

ටdet ቀ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቁ

𝑎1𝑏2 −  𝑎2𝑏
1

 

So, this matrix that we have found, with just one additional term, is able to provide information 

about the parallelogram spanned by the vectors being hypercrossed! Recall that ඥdet(𝐴்𝐴) is 

the 2-volume spanned by the vectors that are the concatenated in the hypercross matrix. Compare 

this to the formula for |𝑎⃗||𝑏ሬ⃗ | sin 𝜃 with two 3x1 vectors, 



|𝑎⃗||𝑏ሬ⃗ | sin 𝜃 = ห𝑎⃗ × 𝑏ሬ⃗ ห  

We can make a slight modification to both formulas to find this interesting relationship, with D 

being the dimension (number of rows) of the one column vectors 𝑎⃗ and 𝑏ሬ⃗ : 

 

D = 3:  

|𝑎⃗||𝑏ሬ⃗ | sin 𝜃 =  ห𝑎⃗ × 𝑏ሬ⃗ ห =
ห𝑎⃗ × 𝑏ሬ⃗ ห

(𝑎
1

𝑏2 −  𝑎2𝑏
1

)ଷିଷ
=  

ห𝑎⃗ × 𝑏ሬ⃗ ห

(𝑎
1

𝑏2 −  𝑎2𝑏
1

)଴
  

D=4 

|𝑎⃗||𝑏ሬ⃗ | sin 𝜃 =   

ටdet ቀ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቁ

𝑎1𝑏2 −  𝑎2𝑏
1

=

ටdet ቀ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ] ቁ

(𝑎
1

𝑏2 −  𝑎2𝑏
1

)ସିଷ

=  

ටdet ቀ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቁ

(𝑎
1

𝑏2 −  𝑎2𝑏
1

)ଵ
 

Add D = 2 and we find that this rule is extended. 

 

|𝑎⃗||𝑏ሬ⃗ | sin 𝜃 =  𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ =  
1

(𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ଶିଷ
=

1

(𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ିଵ
  

 

V. Applications and extension to the general n-hypercross product 

 

The 4-hypercross product, with its properties being very similar to the 3-dimensional cross 
product, can be used to describe rotations in 4 dimensional spaces. We can define the 4-
dimensional angular momentum formula to be  

𝐿 =  𝑟 m𝑣⃗ = 𝑟 𝑝  

Whereas the formula for angular force, also known as moment or torque would be: 

𝜏 =  𝑟 m𝑎⃗ = 𝑟 𝐹⃗  

These would give the angular momentum and torque matrices which represent a subset of the 
orthogonal subspace, or plane of rotation. Any linear combination of the two column vectors of 
this matrix lie on the plane of rotation. For the angular momentum matrix, it has an area of  



𝑔ସି଴|𝑟||𝑝| sin 𝜃 , where 𝑔ସି଴ = 𝑟ଵ𝑝ଶ −  𝑟ଶ𝑝ଵ is an extra quantity used for the calculation known 

as the 2-volume momentum factor. For the torque matrix, it has an area of 𝑔ସିଵ|𝑟||𝐹⃗| sin 𝜃 , 
where 𝑔ସିଵ = 𝑟ଵ𝐹ଶ −  𝑟ଶ𝐹ଵ is an extra quantity used for the calculation known as the 2-volume 
force factor. This is in the case that these matrices do not have any columns which are just the 
zero vector, the columns are linearly independent, as well as the 𝑔ସି(଴,ଵ)factor being non-zero.  

 

We can define a general n-hypercross product by using the same method determined to find 
the 4-hypercross product, finding the kernel of the transpose of a general 𝑛 × (𝑛 − 2) matrix. 
The n-hypercross product, denoted as  

 

𝑎⃗ 𝑏ሬ⃗  

Can be determined through the same linear algebra algebraic expansions to be equal to an 
𝑛 × (𝑛 − 2) matrix of the form: 

 

ቂ
𝐴
𝐵

ቃ 

Where A is a 𝑛 × (𝑛 − 2) matrix f the form 

 

൤
 𝑎ଶ𝑏ଷ − 𝑎ଷ𝑏ଶ  𝑎ଶ𝑏ସ − 𝑎ସ𝑏ଶ           

 𝑎ଷ𝑏ଵ −  𝑎ଵ𝑏ଷ  𝑎ସ𝑏ଵ −  𝑎ଵ𝑏ସ           

 𝑎ଶ𝑏ହ − 𝑎ହ𝑏ଶ    𝑎ଶ𝑏଺ − 𝑎଺𝑏ଶ

 𝑎ହ𝑏ଵ −  𝑎ଵ𝑏ହ           𝑎଺𝑏ଵ −  𝑎ଵ𝑏଺             

… … .  𝑎ଶ𝑏௡ − 𝑎௡𝑏ଶ

… … . .  𝑎௡𝑏ଵ −  𝑎ଵ𝑏௡             
൨ 

And B is 

(𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)𝐼௡ିଶ 

Where 𝐼௡ିଶ denotes the identity matrix of order  𝑛 − 2. Angular momentum and torque in n-
dimensions can be defined through the same manner, with factors 𝑔௡ି଴ and 𝑔௡ିଵ , the n-2 
volume momentum and force factors, respectively being equal to (𝑟ଵ𝑝ଶ −  𝑟ଶ𝑝ଵ)௡ିଷ and 
(𝑟ଵ𝐹ଶ −  𝑟ଶ𝐹ଵ)௡ିଷ. The general angular momentum and torque matrices for an n-dimensional 
Euclidean space of dimension 4 or greater are n x n-2 matrices that can be represented by the 
formulas: 

𝐿 =  𝑟 m𝑣⃗ = 𝑟 𝑝  

𝜏 =  𝑟 m𝑎⃗ = 𝑟 𝐹⃗  



 

 

 

 

We find that there is a rule for all dimensions in which rotations are possible, that is all 
𝑑 ≥ 2. The area spanned by the parallelogram formed by the two vectors defining the rotation, 
which has a scalar value of the magnitude of the torque or angular momentum, follows the rule 
described in this table: 

 

Dimension |𝑎⃗||𝑏ሬ⃗ | sin 𝜃 
 

Rotation hyperplane 

2 1

(𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ିଵ
 

 

Point of rotation 

3 ห𝑎⃗ × 𝑏ሬ⃗ ห

(𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)଴
 

 

Axis of rotation 

4 
ටdet ቀ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቁ

𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ
 

 

Plane of rotation 

5 
ඨdet ቆ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቇ

(𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ଶ
 

 

3-hyperplane of 
rotation 

6 
ඨdet ൭[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]൱

(𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)ଷ
 

 

4-hyperplane of 
rotation 

n (all n greater than or equal 
to 4) ඨdet ቆ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቇ

(𝑎ଵ𝑏ଶ −  𝑎ଶ𝑏ଵ)௡ିଷ
 

 

(n-2) hyperplane of 
rotation 

 



So, there is a regular relationship between the volume of the hyperplane of rotation produced by 
the cross product or n-hypercross product operation, except for the case in 2 dimensions where 
the volume of a point is hard to define.  

 

The cross product can be applied to the notion of curl which is an important applied 
concept in physics. The curl of a vector field is defined as the cross product of the del operator 
and the vector field. It is defined as such: 

 

𝑐𝑢𝑟𝑙 𝐹⃗ =  ∇ ×  𝐹⃗ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎤

  ×    ൥

𝐹ଵ

𝐹ଶ

𝐹ଷ

൩ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝐹ଷ

𝜕𝑦
−

𝜕𝐹ଶ

𝜕𝑧
𝜕𝐹ଵ

𝜕𝑧
−

𝜕𝐹ଷ

𝜕𝑥
𝜕𝐹ଶ

𝜕𝑥
−

𝜕𝐹ଵ

𝜕𝑦 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

            

Using the curl, we can show that for conservative forces, that is, forces which are the gradient of 
some sort of a potential (energy), the work done from point a to point b is the same regardless of 
the path, as well as the fact that the total work done along a closed loop is zero, in 2 and 3-
dimensional spaces. This can be extended to n-dimensional spaces using the n-curl which is 
defined in terms of the n-hypercross product. In order to show this, we must prove a statement 
about the curl of a gradient field, as well as a theorem known as Stokes’ theorem. 

 For any twice-continuously differentiable function 𝑓, the curl of the gradient of 𝑓 is the 
zero vector.  

𝑐𝑢𝑟𝑙 ∇𝑓 = ∇ ×  ∇𝑓 =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎤

×  

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦
𝜕𝑓

𝜕𝑧⎦
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎡

𝜕ଶ𝑓

𝜕𝑦𝜕𝑧
−

𝜕ଶ𝑓

𝜕𝑧𝜕𝑦

𝜕ଶ𝑓

𝜕𝑧𝜕𝑥
−

𝜕ଶ𝑓

𝜕𝑥𝜕𝑧
𝜕ଶ𝑓

𝜕𝑥𝜕𝑦
−

𝜕ଶ𝑓

𝜕𝑦𝜕𝑥⎦
⎥
⎥
⎥
⎥
⎥
⎤

 = 0ሬ⃗            

This is due to the equality of mixed partial derivatives for twice-continuously differentiable 
functions.  

 We can hypercross the del operator with a vector field in ℝସ to obtain a quantity known 
as the 4-curl (has some physical similarities with ordinary curl). This gives us the following 
result: 



𝑐𝑢𝑟𝑙ସ 𝐹⃗ =  ∇  𝐹⃗ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

డ

డ௫
డ

డ௬

డ

డ௭
డ

డ௪⎦
⎥
⎥
⎥
⎥
⎥
⎤

 ൦

𝐹ଵ

𝐹ଶ

𝐹ଷ

𝐹ସ

൪ = 

⎣
⎢
⎢
⎢
⎢
⎡

డிయ

డ௬
−

డிమ

డ௭

డிభ

డ௭
−

డிయ

డ௫
డிమ

డ௫
−

డிభ

డ௬

0

           

డிర

డ௬
−

డிమ

డ௪

డிభ

డ௪
−

డிర

డ௫

0
డிమ

డ௫
−

డிభ

డ௬ ⎦
⎥
⎥
⎥
⎥
⎤

   

It has some properties of the ordinary curl. If we take the “4-curl” of a gradient field in 4-d 

space, the first column vector of this matrix is clearly 0ሬ⃗  since it is the same expression for all 
non-trivial terms as the ordinary curl. If we check the second column vector, we get the same 
result: 

 

𝑐𝑢𝑟𝑙ସ ∇𝑓 = ∇  ∇𝑓 =  

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕

𝜕𝑥
𝜕

𝜕𝑦
𝜕

𝜕𝑧
𝜕

𝜕𝑤⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦
𝜕𝑓

𝜕𝑧
𝜕𝑓

𝜕𝑤⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

𝜕ଶ𝑓

𝜕𝑦𝜕𝑧
−

𝜕ଶ𝑓

𝜕𝑧𝜕𝑦

𝜕ଶ𝑓

𝜕𝑧𝜕𝑥
−

𝜕ଶ𝑓

𝜕𝑥𝜕𝑧
𝜕ଶ𝑓

𝜕𝑥𝜕𝑦
−

𝜕ଶ𝑓

𝜕𝑦𝜕𝑥
0

           

𝜕ଶ𝑓

𝜕𝑦𝜕𝑤
−

𝜕ଶ𝑓

𝜕𝑤𝜕𝑦

𝜕ଶ𝑓

𝜕𝑤𝜕𝑥
−

𝜕ଶ𝑓

𝜕𝑥𝜕𝑤
0

𝜕ଶ𝑓

𝜕𝑥𝜕𝑦
−

𝜕ଶ𝑓

𝜕𝑦𝜕𝑥 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

    

So, the 4-curl of any gradient with the specified properties is a 4 × 2  zero matrix. 

 By applying Stokes’ theorem, we can prove that, in ℝଶ or ℝଷ,  the work done by a 
conservative vector field over a closed loop is zero, and that the work done by the vector field 
from point a to point b is the same regardless of the path taken. Stokes’ theorem relates the 
integral of the curl of a vector field over a surface to the line integral of the vector field over the 
boundary of the surface. For some background, it is proven here. The line integral of a force field 
over a curve is the total work done.  It is defined as such for a curve 𝑐(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝑧(𝑡)) 

and a vector field 𝐹⃗: 

 

න 𝐹⃗ ∙ 𝑑𝑠 = න 𝐹(𝑐(𝑡))ሬሬሬሬሬሬሬሬሬሬሬሬሬሬሬ⃗ ∙
𝑑

𝑑𝑡
𝑐(𝑡) dt

௕

௔

 

 Parametrized surfaces in ℝଷ are functions Φ from ℝଶ to ℝଷ which map a domain D in ℝଶ 
to create an image 𝑆 = Φ(D). We can write this function as: 

Φ(u, v) = (x(u, v), y(u, v), z(u, v)) 

The boundary of the curve is defined as a function: 

𝑝(𝑡) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))) 



 

We define the tangent vectors to the curves on the surface as 𝑇௨
ሬሬሬሬ⃗  and 𝑇௩

ሬሬሬ⃗  . These are the vectors: 

𝑇௨
ሬሬሬሬ⃗ =  

⎣
⎢
⎢
⎢
⎡

డ௫

డ௨
డ௬

డ௨
డ௭

డ௨⎦
⎥
⎥
⎥
⎤

   and    𝑇௩
ሬሬሬ⃗ =  

⎣
⎢
⎢
⎢
⎡

డ௫

డ௩
డ௬

డ௩
డ௭

డ௩⎦
⎥
⎥
⎥
⎤

    

Taking the cross product of these two vectors gives a third vector that is normal to the surface, 

𝑇௨
ሬሬሬሬ⃗ ×   𝑇௩

ሬሬሬ⃗ . The surface integral of a vector field defined on the surface S can be defined using this 

normal vector. For a vector field 𝐹⃗ in ℝଷ, the surface integral is defined as such: 

 

ඵ 𝐹⃗ ∙  d𝑆 = ඵ 𝐹⃗ ∙ ൫𝑇௨
ሬሬሬሬ⃗ ×   𝑇௩

ሬሬሬ⃗ ൯𝑑𝑢𝑑𝑣 
஽

  

In Stokes’ theorem, we consider the case of the vector field being the curl of some vector field. 
The vector surface integral of a 𝐶ଵ vector field is: 

ඵ(∇ ×  𝐹⃗) ∙  ൫𝑇௨
ሬሬሬሬ⃗ ×   𝑇௩

ሬሬሬ⃗ ൯𝑑𝑢𝑑𝑣   

The boundary of this surface can be described as a curve. We computed the vector  𝑇௨
ሬሬሬሬ⃗ ×   𝑇௩

ሬሬሬ⃗  
which is equal to: 

𝑇௨
ሬሬሬሬ⃗ ×   𝑇௩

ሬሬሬ⃗ =  

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣
−

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑢
𝜕𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑣
−

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑢
𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑣⎦
⎥
⎥
⎥
⎥
⎤

 

The surface vector surface integral is defined as: 

ඵ൫∇ ×  𝐹⃗൯ ∙  d𝑆  

=  ඵ ൬
𝜕𝐹ଷ

𝜕𝑦
−

𝜕𝐹ଶ

𝜕𝑧
൰ ൬

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣
−

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑢
൰ + ൬

𝜕𝐹ଵ

𝜕𝑧
−

𝜕𝐹ଷ

𝜕𝑥
൰ ൬

𝜕𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑣
−

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑢
൰ + (

𝜕𝐹ଶ

𝜕𝑥஽

−
𝜕𝐹ଵ

𝜕𝑦
)(

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑣
)𝑑𝐴  

We now can relate this to the line-integral over the boundary of the surface.  



න 𝐹⃗ ∙ 𝑑𝑠 = න 𝐹ଵ

𝑑𝑥

𝑑𝑡
+ 𝐹ଶ

𝑑𝑦

𝑑𝑡
+ 𝐹ଷ

𝑑𝑧

𝑑𝑡
dt

௕

௔

 

Then, we can rewrite the derivatives as: 

 

ௗ௫

ௗ௧
=

డ௫

డ௨

ௗ௨

ௗ௧
+

డ௫

డ௩

ௗ௩

ௗ௧
  ,   

ௗ௬

ௗ௧
=

డ௬

డ௨

ௗ௨

ௗ௧
+

డ௬

డ௩

ௗ௩

ௗ௧
  ,   

ௗ௭

ௗ௧
=

డ௭

డ௨

ௗ௨

ௗ௧
+

డ௭

డ௩

ௗ௩

ௗ௧
   

 

So, the line integral is rewritten as: 

න(𝐹ଵ

𝜕𝑥

𝜕𝑢
+ 𝐹ଶ

𝜕𝑦

𝜕𝑢
+ 𝐹ଷ

𝜕𝑧

𝜕𝑢
)

𝑑𝑢

𝑑𝑡
+ (𝐹ଵ

𝜕𝑥

𝜕𝑣
+ 𝐹ଶ

𝜕𝑦

𝜕𝑣
+ 𝐹ଷ

𝜕𝑧

𝜕𝑣
)

𝑑𝑣

𝑑𝑡
dt 

 

Using Green’s theorem, we can rewrite this as: 

ඵ
𝜕(𝐹ଵ

𝜕𝑥
𝜕𝑣

+ 𝐹ଶ
𝜕𝑦
𝜕𝑣

+ 𝐹ଷ
𝜕𝑧
𝜕𝑣

)

𝜕𝑢
−

𝜕(𝐹ଵ
𝜕𝑥
𝜕𝑢

+ 𝐹ଶ
𝜕𝑦
𝜕𝑢

+ 𝐹ଷ
𝜕𝑧
𝜕𝑢

)

𝜕𝑣
𝑑𝐴   

This can be simplified to be rewritten as: 

ඵ ൬
𝜕𝐹ଷ

𝜕𝑦
−

𝜕𝐹ଶ

𝜕𝑧
൰ ൬

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣
−

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑢
൰ + ൬

𝜕𝐹ଵ

𝜕𝑧
−

𝜕𝐹ଷ

𝜕𝑥
൰ ൬

𝜕𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑣
−

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑢
൰ + (

𝜕𝐹ଶ

𝜕𝑥
−

𝜕𝐹ଵ

𝜕𝑦
)(

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣

−
𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑣
)𝑑𝐴  

Now lets try and use the hypercross product and its associated “n-curl” to write an identity that 
works in other dimensions since the cross product cannot be applied to a vector field in ℝସ or 
greater. Now the surface is parametrized as:  

Φ(u, v) = (x(u, v), y(u, v), z(u, v), w(u, v)) 

 

And the corresponding boundary is: 

𝑝(𝑡) = (x൫u(t), v(t)൯, y൫u(t), v(t)൯, z൫u(t), v(t)൯, w൫u(t), v(t)൯) 

The unit tangent vectors to the surface are: 



𝑇௨
ሬሬሬሬ⃗ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

డ௫

డ௨
డ௬

డ௨
డ௭

డ௨
డ௪

డ௨⎦
⎥
⎥
⎥
⎥
⎥
⎤

   and    𝑇௩
ሬሬሬ⃗ =  

⎣
⎢
⎢
⎢
⎢
⎢
⎡

డ௫

డ௩
డ௬

డ௩
డ௭

డ௩
డ௪

డ௩ ⎦
⎥
⎥
⎥
⎥
⎥
⎤

    

 

𝑇௨
ሬሬሬሬ⃗  𝑇௩

ሬሬሬ⃗ =

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣
−

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑢
𝜕𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑣
−

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑢
𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑣
0

           

𝜕𝑦

𝜕𝑢

𝜕𝑤

𝜕𝑣
−

𝜕𝑤

𝜕𝑢

𝜕𝑦

𝜕𝑣
𝜕𝑤

𝜕𝑢

𝜕𝑥

𝜕𝑣
−

𝜕𝑤

𝜕𝑣

𝜕𝑥

𝜕𝑢
0

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑣 ⎦
⎥
⎥
⎥
⎥
⎥
⎤

    

Now we can take the line integral of the vector field along the boundary.  

න 𝐹⃗ ∙ 𝑑𝑠 = න 𝐹ଵ

𝑑𝑥

𝑑𝑡
+ 𝐹ଶ

𝑑𝑦

𝑑𝑡
+ 𝐹ଷ

𝑑𝑧

𝑑𝑡
+ 𝐹ସ

𝑑𝑤

𝑑𝑡
dt

௕

௔

 

Then, we can rewrite the derivatives as: 

 

ௗ௫

ௗ௧
=

డ௫

డ௨

ௗ௨

ௗ௧
+

డ௫

డ௩

ௗ௩

ௗ௧
  ,   

ௗ௬

ௗ௧
=

డ௬

డ௨

ௗ௨

ௗ௧
+

డ௬

డ௩

ௗ௩

ௗ௧
  , 

   
ௗ௭

ௗ௧
=

డ௭

డ௨

ௗ௨

ௗ௧
+

డ௭

డ௩

ௗ௩

ௗ௧
  ,   

ௗ௪

ௗ௧
=

డ௪

డ௨

ௗ௨

ௗ௧
+

డ௪

డ௩

ௗ௩

ௗ௧
   

So, the line integral is rewritten as: 

න(𝐹ଵ

𝜕𝑥

𝜕𝑢
+ 𝐹ଶ

𝜕𝑦

𝜕𝑢
+ 𝐹ଷ

𝜕𝑧

𝜕𝑢
+ 𝐹ସ

𝜕𝑤

𝜕𝑢
)

𝑑𝑢

𝑑𝑡
+ (𝐹ଵ

𝜕𝑥

𝜕𝑣
+ 𝐹ଶ

𝜕𝑦

𝜕𝑣
+ 𝐹ଷ

𝜕𝑧

𝜕𝑣
+ 𝐹ସ

𝜕𝑤

𝜕𝑣
)

𝑑𝑣

𝑑𝑡
dt 

 

As in the previous case we use Green’s theorem to rewrite this as: 

ඵ
𝜕(𝐹ଵ

𝜕𝑥
𝜕𝑣

+ 𝐹ଶ
𝜕𝑦
𝜕𝑣

+ 𝐹ଷ
𝜕𝑧
𝜕𝑣

+ 𝐹ସ
𝜕𝑤
𝜕𝑣

)

𝜕𝑢
−

𝜕(𝐹ଵ
𝜕𝑥
𝜕𝑢

+ 𝐹ଶ
𝜕𝑦
𝜕𝑢

+ 𝐹ଷ
𝜕𝑧
𝜕𝑢

+ 𝐹ସ
𝜕𝑤
𝜕𝑢

)

𝜕𝑣
𝑑𝐴   

 

This simplifies to the expression: 

 



ඵ ൬
𝜕𝐹ଷ

𝜕𝑦
−

𝜕𝐹ଶ

𝜕𝑧
൰ ൬

𝜕𝑦

𝜕𝑢

𝜕𝑧

𝜕𝑣
−

𝜕𝑦

𝜕𝑣

𝜕𝑧

𝜕𝑢
൰ + ൬

𝜕𝐹ଵ

𝜕𝑧
−

𝜕𝐹ଷ

𝜕𝑥
൰ ൬

𝜕𝑧

𝜕𝑢

𝜕𝑥

𝜕𝑣
−

𝜕𝑧

𝜕𝑣

𝜕𝑥

𝜕𝑢
൰

+ ൬
𝜕𝐹ଶ

𝜕𝑥
−

𝜕𝐹ଵ

𝜕𝑦
൰ ൬

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑣
൰ + ൬

𝜕𝐹ଵ

𝜕𝑤
−

𝜕𝐹ସ

𝜕𝑥
൰ ൬

𝜕𝑤

𝜕𝑢

𝜕𝑥

𝜕𝑣
−

𝜕𝑤

𝜕𝑣

𝜕𝑥

𝜕𝑢
൰

+ ൬
𝜕𝐹ସ

𝜕𝑦
−

𝜕𝐹ଶ

𝜕𝑤
൰ ൬

𝜕𝑦

𝜕𝑢

𝜕𝑤

𝜕𝑣
−

𝜕𝑦

𝜕𝑣

𝜕𝑤

𝜕𝑢
൰ + ൬

𝜕𝐹ଷ

𝜕𝑤
−

𝜕𝐹ସ

𝜕𝑧
൰ ൬

𝜕𝑧

𝜕𝑢

𝜕𝑤

𝜕𝑣
−

𝜕𝑤

𝜕𝑢

𝜕𝑧

𝜕𝑣
൰ 𝑑𝐴  

If we use the notation: (∇  𝐹⃗)௜ to represent the i-th column of the “4-curl” matrix, and (𝑇௨
ሬሬሬሬ⃗  

𝑇௩
ሬሬሬ⃗ )௜ to represent the i-th column of that matrix then we can write the identity: 

න 𝐹⃗ ∙ 𝑑𝑠 = ඵ(∇  𝐹⃗)ଵ ∙  ቀ𝑇௨
ሬሬሬሬ⃗   𝑇௩

ሬሬሬ⃗ ቁ
ଵ

+ ቀ∇  𝐹⃗ቁ
ଶ

∙  ቀ𝑇௨
ሬሬሬሬ⃗   𝑇௩

ሬሬሬ⃗ ቁ
ଶ

− ൬
𝜕𝐹ଶ

𝜕𝑥
−

𝜕𝐹ଵ

𝜕𝑦
൰ ൬

𝜕𝑥

𝜕𝑢

𝜕𝑦

𝜕𝑣
−

𝜕𝑦

𝜕𝑢

𝜕𝑥

𝜕𝑣
൰ + ൬

𝜕𝐹ଷ

𝜕𝑤
−

𝜕𝐹ସ

𝜕𝑧
൰ ൬

𝜕𝑧

𝜕𝑢

𝜕𝑤

𝜕𝑣
−

𝜕𝑤

𝜕𝑢

𝜕𝑧

𝜕𝑣
൰ 𝑑𝐴  

 This can be written for the general “n-curl” to relate line integrals of a vector field 𝐹⃗ =

 

⎣
⎢
⎢
⎢
⎢
⎢
⎡
𝐹ଵ

𝐹ଶ

𝐹ଷ

.

.

.
𝐹௡⎦

⎥
⎥
⎥
⎥
⎥
⎤

  on the boundaries of surfaces which are maps from  ℝଶ to ℝ௡ that are parametrized as 

Φ(u, v) = (𝑥ଵ(u, v), 𝑥ଶ(u, v), 𝑥ଷ(u, v) … … 𝑥௡(u, v)) . The more general identity here is: 

න 𝐹⃗ ∙ 𝑑𝑠 = ඵ ෍(∇  𝐹⃗)௜ ∙  ቀ𝑇௨
ሬሬሬሬ⃗   𝑇௩

ሬሬሬ⃗ ቁ
௜

௡ିଶ

௜ୀଵ

− (𝑛 − 3) ൬
𝜕𝐹ଶ

𝜕𝑥ଵ
−

𝜕𝐹ଵ

𝜕𝑥ଶ
൰ ൬

𝜕𝑥ଵ

𝜕𝑢

𝜕𝑥ଶ

𝜕𝑣
−

𝜕𝑥ଶ

𝜕𝑢

𝜕𝑥ଵ

𝜕𝑣
൰

+ ෍ ෍ ቆ
𝜕𝐹௜

𝜕𝑥௝
−

𝜕𝐹௝

𝜕𝑥௜
ቇ ቆ

𝜕𝑥௜

𝜕𝑣

𝜕𝑥௝

𝜕𝑢
−

𝜕𝑥௝

𝜕𝑣

𝜕𝑥௜

𝜕𝑢
ቇ

௡

௝வ௜

௡

௜ୀଷ

𝑑𝐴  

 

Which holds for all 𝑛 > 3. This shows that the line integral about a curve in ℝ௡ which is the 
boundary of some surface is 0 if this vector field is a gradient field. Because of this, we can 
conclude that the work done along any path from one point to another is equal if there is a 
conservative force field, and the work done along a closed loop is zero.  

  

 

 



Notes: coordinate system should be modified for vectors in 4-space that have three non-zero 
entries so that the x and y coordinates contain non-zero values.  

 

The hypercross product of any dimension n, while not useful for curves (1 degree of 
freedom), 3-manifolds (3 degrees of freedom), or any higher dimensional manifolds, can be 
useful for evaluating areas of surfaces (geometric objects with 2 degrees of freedom) as well as 
the integral of scalar functions over these surfaces in any dimension n. For curves, the arc length 
formula should be used, while for 3 and higher dimensional manifolds wedge products and 
differential forms should be used to find the content since these generate the volume forms of 
vectors in ℝ௡. In order to find relate the flow a vector field on the boundary of a manifold to the 
flux through the manifold differential forms should be used.  

The area of a surface in ℝ௡ is given by: 

𝐴(𝑆) = ඵ

ඨdet ቆ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቇ

(
𝜕𝑥
𝜕𝑢

𝜕𝑦
𝜕𝑣

−
𝜕𝑦
𝜕𝑢

𝜕𝑥
𝜕𝑣

)௡ିଷ
𝑑𝑢𝑑𝑣 

And the integral of a scalar valued function 𝑓(Φ(u, v)) is  

ඵ 𝑓𝑑𝑆 = ඵ 𝑓(Φ(u, v)) 

ඨdet ቆ[𝑎⃗ 𝑏ሬ⃗  ]்[𝑎⃗ 𝑏ሬ⃗ ]ቇ

(
𝜕𝑥
𝜕𝑢

𝜕𝑦
𝜕𝑣

−
𝜕𝑦
𝜕𝑢

𝜕𝑥
𝜕𝑣

)௡ିଷ
𝑑𝑢𝑑𝑣 

 

 It should be noted that unlike the wedge product which gives the volume spanned by the 
vectors whose product is taken, the hypercross product gives the area scaled by a factor that is 
directly proportional to the dimension of the vectors. Unlike the wedge product, it also cannot be 
applied to more than two vectors and does not produce a bivector or “2-blade” when the product 
of two vectors is taken for any dimension except D=4. Another difference is that this produces 
the orthogonal complement of the two vectors whose product is taken regardless of the 
dimension. 

 

VI. Inverse n-hypercross product 

 



We can also find the product of a vector and a matrix to find the orthogonal complement of a 

vector and a bivector using the same method as before. Given a vector 𝑎⃗ = ൦

𝑎ଵ

𝑎ଶ

𝑎ଷ

𝑎ସ

൪ and a matrix 𝐵 = 

൦

𝑏ଵ

𝑏ଶ

𝑏ଷ

𝑏ସ

  

 𝑐ଵ

𝑐ଶ

𝑐ଷ

𝑐ସ

൪, the inverse 4-hypercross product would be: 

𝑎⃗  𝐵 =

⎣
⎢
⎢
⎡
𝑎ଵ𝑏ଶ(𝑎ସ𝑐ଷ − 𝑎ଷ𝑐ସ) + 𝑎ଵ𝑐ଶ(𝑎ଷ𝑏ସ − 𝑎ସ𝑏ଷ) + 𝑎ଵ𝑎ଶ(𝑏ଷ𝑐ସ − 𝑐ଷ𝑏ସ)

(𝑎ଵ𝑏ସ − 𝑎ସ𝑏ଵ)(𝑎ଵ𝑐ଷ − 𝑎ଷ𝑐ଵ) − (𝑎ଵ𝑏ଷ − 𝑎ଷ𝑏ଵ)(𝑎ଵ𝑐ସ − 𝑎ସ𝑐ଵ)

(𝑎ଵ𝑏ଶ − 𝑎ଶ𝑏ଵ)(𝑎ଵ𝑐ସ − 𝑎ସ𝑐ଵ) − (𝑎ଵ𝑐ଶ − 𝑎ଶ𝑐ଵ)(𝑎ଵ𝑏ସ − 𝑎ସ𝑏ଵ)

(𝑎ଵ𝑐ଷ − 𝑎ଷ𝑐ଵ)(𝑎ଵ𝑏ଶ − 𝑎ଶ𝑏ଵ) − (𝑎ଵ𝑐ଶ − 𝑎ଶ𝑐ଵ)(𝑎ଵ𝑏ଷ − 𝑎ଷ𝑏ଵ) ⎦
⎥
⎥
⎤

   

The inverse 5-hypercross product as well as the higher dimensional analogues are significantly 
more complicated.  
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