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1. Abstract

The cross-product operation on two vectors is a well-known operation that is applicable to
physics. The operation is a vector product which yields a third vector that is orthogonal to the
original two vectors and has a magnitude of the product of the magnitudes of the two individual
vectors multiplied by the sine of the angle between the two vectors. It is an extraordinarily useful
formula in physics which allows us to describe torque and angular momentum essentially giving
us understanding of how 3-dimensional rotations work, with the well-known formula:
torque(scalar) = |r||F| sin 6 or torque(vector)=r X F. It is also used in the computation of the
curl of vector fields. However, while the cross product is useful for 3-dimensions, it cannot be
applied to 4-dimensional or any higher-dimensional rotations. The task of this study was to find a
formula which like the cross product can be used to describe rotations in 4-dimensional
Euclidean space, as well as the generalization of this idea to any n-dimensional Euclidean space.
A formula was found with properties similar to the cross product, which will be called the 4-
hypercross product. This formula can be extended to n-dimensional Euclidean spaces where n is
any natural number greater than or equal to 2, creating the n-hypercross product.

1I. Introduction

While it may seem mysterious at first, the reason why there is no cross product in 4-
dimensional spaces, in other words, why the cross product cannot be applied to 4-dimensions, is
because of the fact that rotations occur around an axis in 3 dimensions, and around a plane in 4
dimensions. In fact, rotations occur around the n — 2 dimensional hyperplane for any dimension
n (point for 2 dimensions, line for 3 dimensions, plane for 4 dimensions, 3-hyperplane for 5
dimensions, etc.). So, the cross product which yields a vector must be modified to yield the 2 and
higher-dimensional analogue, a matrix. A 3 X 1 vector is yielded for the cross product since it is
a line that exists in a 3-dimensional space. Since we are now searching for a plane that exists in a



4-dimensional space, we seek a 4 X 2 matrix for the 4-hypercross product. The matrix that we
are seeking should be of the form:

X1 M1
X2 Y2
X3 V3
X4 Ya

We will use a new symbol to define this hypercross product between two vectors, @ and b,

(which are 4 X 1 vectors) which will be GX b, so

i Xp-
X1 V1
X2 Y2
X3 Y3
X4 Va

III.  Linear Algebra

In order to find a similar operation to the cross product in 4 dimensions, we need to find the
orthogonal complement of the two vectors in R* that represent the rotation (the arm and the
motion vector, or the arm and the force vector). In order to do this, we use the concepts of image
and kernel from linear algebra.

In mathematics, the image of a linear transformation or a matrix transformation consists of
all the values the transformation takes in its target space. It is essentially the span of the
concatenated vectors making up the matrix, where the span of all possible values for a location
that the sum of scalar multiples of the vectors can take up in space. The kernel of a linear
transformation on the other hand is related to the original space of the linear transformation, not
the target space. It is defined as all subsets of the domain of R™ in a linear transformation from
R™ to R™ which map to the 0 vector of R™. In other words, the kernel of a matrix A is the

solution of the linear system AX = 0. To solve for the kernel of a matrix we solve that linear
system.

We need a few more concepts in order to start deriving this 4-hypercross product. An
operation that can be performed on any two n X 1 vectors is the dot product. The dot product is
defined as:



The dot product gives a scalar which is equal to:
l@||b| cos @

Where 6 is the angle between the two vectors. Thus, the dot product of two perpendicular
vectors is 0. The matrix product of two matrices, n X p and p X m is a product which yields a
third matrix that is n X m. If A and B are matrices of the aforementioned properties with
arbitrary entries, C = AB in the manner such that:

a1 A1z A1p bi1 b1 bim
A= %1 Q22 B = bg1 b,
An1 Anp by1 bym
€11 C12 Cim
C = C.21 C22
Cni  wer e Cnm

p
Cij = Z ik by
k=1

The transpose of a matrix AT is a matrix whose ij-th entry is the ji-th entry of A. For example, the

4 3

.4 -4 8 -91. .r_|-4 2

transpose of the matrle—[3 2 13 1 ]1sA =l s 13
-9 1

Applying the concept of the transpose to a vector, we find that the transpose of a column
vector is just a row vector. This is illustrated here:

4 —
azH aT=[4 8 7]
7

Using this fact, we find that for two column vectors in R", their dot product is just the matrix
product of the transpose of the first vector and the second vector.

—
- —

v-w=vlw

The crucial link that will lead us to derive the hypercross-product is the notion of the
orthogonal complement of a subspace of R™. This is defined as the region of R™ that contains all



vectors that are perpendicular to the vectors in the image of a matrix A. Suppose V = im(A) isa
subspace of R™.

A= [V V; V3 v v Uyl
The orthogonal complement V1 must satisfy the following property:
Vi=allx inR"suchthatv,- X =0 foralli=123..m

V+ = all X in R™ such that TJL—T)J_C-) =0 foralli=123..m

So we can say that V4 = im(A4) * is just the kernel of the matrix:

v,

_—

AT

This proves the theorem that given a matrix A

im(A) + = ker (A7)

Where ker() denotes the kernel of a matrix. Given that we are searching for the orthogonal
complement of the two rotation vectors (the arm and the motion vector), to find the hypercross
product we find the kernel of the transpose of the matrix that is the concatenation of these two
vectors. This will give us a matrix that spans the orthogonal complement of the rotation vectors,
giving us the hyperplane of rotation. So, the hypercross product is essentially the kernel of the
transpose of a general 4 X 2 matrix (note that this method can be used to generate the cross
product of two 3 X 1 vectors as well).

IV. Derivation and Verification

We start by defining the two vectors that are being hypercrossed:

a, b,
a, > b,
Ay b4

We define the matrix K which is the concatenation of these two vectors in R*, and its transpose.

Qu
Il



To find ker (KT) we solve the linear

a;
by

First divide the first row by a; to get:

1

by

by
b, r_ [@1 4z
b,| K = lb b,
by
system
KTx =0
X1
a; as ‘14] X
b2 b3 b4 x3
X4
a, as Qau
a, 4 a4 |
b, b3 by | O

Subtract b, times the first row from the second row to get:

a, as ay
1 2 3 Z4
a, a; a;
b,a, byas bya,
a; a; a
. . b1a2
Divide the second row by b, — -
1
as Ay
) a a
1 - b _ b1 a3 b _ b1a4
a,; Dbj a 4 a
1 1
0 1 5 5
142 12
b, b,
a; a,

We now subtract 22 times the second row from the first row:

a




_ b,as
a3 az 3 al
B _2 - )
a1 a1 b _ 1a2
1 0 2
0 1 by — bja;
a,
bia
b 142
2 a
This can be simplified to:
azb,az
| as a,b; — a,
I(l) (i a a b, — azby )
| a,bz — asb,y
l a1b2 - a2b1
We find our solution to be:
a,b,a
a2b3 - —Za::ll 3
xl a1b2 - a2b1
X |
x3 - S a3b1 - a1b3
X4 aib, — azby
1
0

The solution space is the span of these two vectors. We can concatenate them to get a matrix:

azb,as
al a3

azb; —

aib, — azby a,

asb; — a,bs

aib, — azby
1
0

_ bia,
a, a; “4 a, )
a, aq b, — bia,
a;
bya,
b, —
a,
b,a,
b,
a
b azb,a,
a04 —
%_ a1 )
a a,b, — azby
a by — auby
a,b, — azby
b, — azb,a,
A0y — ——
a,
aib, — azby
+t

asb; — aiby

aib, — azby
0
1

azb,a,
al a4

azb, —

aib, — azby a;

asb; — a by
aib, — azby

Scale the matrix by a factor of a; b, — a, b, to get:

a;b; — azb,

azby — a;bs

a;b, — azb,
0

0
1
azby — aub,
asby — aib,

0
a,b, — azby

(@)

S —




This is the orthogonal complement of the vectors d and b. We define the hypercross product of

vectors d and b

a2b3 - a3b2 a2b4 - a4b2

i X7 = asb; — a,bs asb; — ab,
a1b2 - azbl 0

0 aib, — azby

We have found the orthogonal complement, but we still do not know the area spanned by the
parallelogram that is formed by these two concatenated vectors. To find the area spanned by the
vectors of a non-square matrix, we use the formula for a parallelepiped of order m spanned by m
vectors in R™. The m-volume is:

\det(AT A)

We must find the matrix product of the 4-hypercross product matrix and is transpose, find the
determinant of this matrix, and then find the square root of this determinant. First, perform

matrix multiplication on the matrices AT and A = d X}y .

ATA
a,bz — asb, a,b, — ayub,
_ [a2b3 —azb, azby — aybs a;b; — ab, 0 azb; — a bs asb; — a.b,
~ lagby —ayb;  aub; — a;b, 0 a;b; — azby 1| a;b, — a,by 0
0 a;b; — azby
(azbs — azhy)* + (asby — arh3)* + (arh, — azby)? (azby — agby)(azbs — azb,) + (asby — a;by)(azby — a1bs)
(azby — agby)(azbs — azby) + (asby — a;by)(azby — aqbs) (azby — asby)? + (asby — arby)? + (arh, — azhy)?

The determinant of this matrix is then computed:
det(4T4) =
((azbs — ashy)® + (azby — a1hs)?® + (arhy — azb1)?)((azhy — asby)? + (ashy — arby)® + (arh, — azb1)?)

— ((azby — agby)(azbs — azby) + (ashy — aiby)(azby — a;b3))?

We do lots of algebra and expansion to simplify this expression to:



det ([a Xp17[a X b))
= (a,b, — a;b)*((a,b, — a;b)* + (azh, — a;b)* + (a,b, — azh,)* + (a,b - ab,)’

+ (a,b, —agh)* + (a,b, —azb,))
Using the Pythagorean theorem and knowledge of the dot product, we can find |d] |5| sin 0:

|d|2|b|? = |d|?|b|?sin? 6 + |d|?|b|? cos? @
|d|?|b|?sin2 0 = |d|?|b|? — |d|?|b|? cos? O
|@2|b|?sin? 6 = |d|?|b|? — (d@- b)?

So, we square the magnitudes of the vectors and subtract the square of their dot product to get:

|d|2|b|? sin? 0 =
(a2 + a% + az? + a,?)(by” + by” + b3® + b,?) — (arhy + azb, + azhs + azb,)?

= (a,b, — @b )" + (azb, — a;b,)’ + (@b, — azb))* + (ab - ab)’ + (a,b, - azb,)’ + (a,b, - asb,)?

Noticing the similarities between the determinant and this expression, we have found the
equation:

det ([a X5 17(a@ X))

(a,b, — azb )?

|G|2|b|?sin? 6 =

Take the square root on both sides to get:

Jdet([a Xp7(a Xp))

|@||b|sin@ =
a;b, — a,b

1

So, this matrix that we have found, with just one additional term, is able to provide information

about the parallelogram spanned by the vectors being hypercrossed! Recall that /det(AT A) is
the 2-volume spanned by the vectors that are the concatenated in the hypercross matrix. Compare

this to the formula for |a| |B| sin 8 with two 3x1 vectors,



|@||b|sin6 = |d x B|
We can make a slight modification to both formulas to find this interesting relationship, with D

being the dimension (number of rows) of the one column vectors d and b:

laxb|  |axb|

(a,b, — ;)33 (a,b, — ab))°

|@||b|sin6 = |d x B| =

. Jdet([& Xp17(a X b)) Jdet([& Xpr1a Xp) )
|a||b|sin @ = = 3
ab, — azb, (a,b; — ayb))

\/det([& Xp7(a X b))

1
(a1b2 - aZbl)

Add D =2 and we find that this rule is extended.

1 1
(a;by — azb)?3 - (a;by — ayby)7?t

|d||b|sin® = a,;b, — a,b; =

V. Applications and extension to the general n-hypercross product

The 4-hypercross product, with its properties being very similar to the 3-dimensional cross
product, can be used to describe rotations in 4 dimensional spaces. We can define the 4-
dimensional angular momentum formula to be

L=7?Xmp=7Xp
Whereas the formula for angular force, also known as moment or torque would be:
r=7Xmg=7XF

These would give the angular momentum and torque matrices which represent a subset of the
orthogonal subspace, or plane of rotation. Any linear combination of the two column vectors of
this matrix lie on the plane of rotation. For the angular momentum matrix, it has an area of



Ga—ol7|P| sin @ , where g,_o = r1p, — TP, is an extra quantity used for the calculation known
as the 2-volume momentum factor. For the torque matrix, it has an area of g,_; |7 |}?' |sin@,
where g,_, = 1 F, — 1, F; is an extra quantity used for the calculation known as the 2-volume
force factor. This is in the case that these matrices do not have any columns which are just the
zero vector, the columns are linearly independent, as well as the g, 1)factor being non-zero.

We can define a general n-hypercross product by using the same method determined to find
the 4-hypercross product, finding the kernel of the transpose of a general n X (n — 2) matrix.
The n-hypercross product, denoted as

Can be determined through the same linear algebra algebraic expansions to be equal to an
n X (n — 2) matrix of the form:

A
3
Where A is an X (n — 2) matrix f the form
a2b3 - a3b2 a2b4 - a4b2 a2b5 - a5b2 a2b6 - a6b2 T azbn - anbz
asb; — a1bs  asb; — a,b, asb; — a,bs agby — a,bg s Qpby — ayby,

And B is

(a1b; — azby)I,—;

Where I,,_, denotes the identity matrix of order n — 2. Angular momentum and torque in n-
dimensions can be defined through the same manner, with factors g,,_, and g,,_1 , the n-2
volume momentum and force factors, respectively being equal to (r;p, — 15p1)" 2 and

(r F, — 1,F;)™ 3. The general angular momentum and torque matrices for an n-dimensional
Euclidean space of dimension 4 or greater are n X n-2 matrices that can be represented by the
formulas:



We find that there is a rule for all dimensions in which rotations are possible, that is all

d > 2. The area spanned by the parallelogram formed by the two vectors defining the rotation,
which has a scalar value of the magnitude of the torque or angular momentum, follows the rule

described in this table:

Dimension ld| |B| sin Rotation hyperplane
2 1 Point of rotation
(a1b; — azby)™
3 |d@ x f,| Axis of rotation
(a1b; — azby)°
4 - N Plane of rotation
Jdet (1@ X5 7(a Xp))
a;b; — azby
5 3-hyperplane of
det([a X 5yrpa & E]> rotation
(a1b; — azbq)?
6 4-hyperplane of
det ([& X 5 17[a X, B]) rotation
(a1b; — azby)?
n (all n greater than or equal (n-2) hyperplane of
to4) det <[& Xn b 17[a Xn E]) rotation
(a1b; — azby)" 3




So, there is a regular relationship between the volume of the hyperplane of rotation produced by
the cross product or n-hypercross product operation, except for the case in 2 dimensions where
the volume of a point is hard to define.

The cross product can be applied to the notion of curl which is an important applied
concept in physics. The curl of a vector field is defined as the cross product of the del operator
and the vector field. It is defined as such:

[ a T _6F3 an_
ax F dy 0z
o , 0 1
curl F = VX F=|—| X |F :%_%
ay F. 0z 0x
9 3 |oF, oF,
¥ya [ 0x 0y

Using the curl, we can show that for conservative forces, that is, forces which are the gradient of
some sort of a potential (energy), the work done from point a to point b is the same regardless of
the path, as well as the fact that the total work done along a closed loop is zero, in 2 and 3-
dimensional spaces. This can be extended to n-dimensional spaces using the n-curl which is
defined in terms of the n-hypercross product. In order to show this, we must prove a statement
about the curl of a gradient field, as well as a theorem known as Stokes’ theorem.

For any twice-continuously differentiable function f, the curl of the gradient of f is the
zZero vector.

of1 [9°F  9°f]
dx ox 0ydz 0zdy
d af 0%f  9%f
curlVf =V X Vf =|—IXx |—=|= —
d 4 dy dy 0z0x 0x0z
ol lof| |o*r 2%
Lozd Lozl loxdy Odyox]

Il
ol

This is due to the equality of mixed partial derivatives for twice-continuously differentiable
functions.

We can hypercross the del operator with a vector field in R* to obtain a quantity known
as the 4-curl (has some physical similarities with ordinary curl). This gives us the following
result:



‘0F3 6F2 6F4 OFZ-
ox oo T S o T S
2| [B] |om_om on_on
> > v F. 1 _ = -1 _ 2
curl, F=V X F = ay X FZ =| 0z 0x ow ox
— 3 0F, O0F 0
1 W) o "% em_om
— L 0 ox dy |
Low-

It has some properties of the ordinary curl. If we take the “4-curl” of a gradient field in 4-d

space, the first column vector of this matrix is clearly 0 since it is the same expression for all
non-trivial terms as the ordinary curl. If we check the second column vector, we get the same
result:

(91 [97) razr a2 92f  9%f T

6ax gjﬁ dydz 0zdy dyow  dwady

R - 62]: 62]: 62]: aZf
d 0 — _

curl, Vf =V x Vf = ay X 6? = |0z0x 0x0z dwdx 0xow
— — 9%f  0%*f 0

0z 0z — 02 f 92f

F) af Oxdy 0yodx -

e P 0 dxdy 0dydx |

So, the 4-curl of any gradient with the specified properties is a 4 X 2 zero matrix.

By applying Stokes’ theorem, we can prove that, in R? or R3, the work done by a
conservative vector field over a closed loop is zero, and that the work done by the vector field
from point a to point b is the same regardless of the path taken. Stokes’ theorem relates the
integral of the curl of a vector field over a surface to the line integral of the vector field over the
boundary of the surface. For some background, it is proven here. The line integral of a force field
over a curve is the total work done. It is defined as such for a curve ¢(t) = (x(t), y(t), z(t))

and a vector field F:

b
fﬁ-d§=f F(5(t))-%5(t) dt

Parametrized surfaces in R3 are functions ® from R? to R® which map a domain D in R?
to create an image S = ® (D). We can write this function as:

®(u,v) = x(u,v),y(u,v),z(u,v))

The boundary of the curve is defined as a function:

p(©) = (x(u(®), v(), y(u(®), v(D), z(u(t), v(t))



We define the tangent vectors to the curves on the surface as 7‘: and 7‘; . These are the vectors:

_ |9y
T, = 5

Taking the cross product of these two vectors gives a third vector that is normal to the surface,
7‘: X 7‘; The surface integral of a vector field defined on the surface S can be defined using this

normal vector. For a vector field F in R3, the surface integral is defined as such:

ffﬁ- as :ff Fo(Tox To)dudv
D

In Stokes’ theorem, we consider the case of the vector field being the curl of some vector field.
The vector surface integral of a C! vector field is:

f (Vx F): (T, x T,)dudv

—

The boundary of this surface can be described as a curve. We computed the vector 7‘: X T,
which is equal to:

dyodz 0dyoz

dudv dvou

T x T = 0z 0x 0z 0x
v v Judv dvadu
dxdy 0dyox

Louodv  du dv-

The surface vector surface integral is defined as:

f(vXﬁ)-ds*

ff 6F3 6F2 (6y dz 0dy 62) N (6F1 6F3) (62 ox 0z ax) dF,
dx

dudv dJdvdu
JdF; 6x 6y 6y 0x

dy “0udv Odudv

0z 0x

Judv dvaou +

We now can relate this to the line-integral over the boundary of the surface.



]ﬁ d*—bed +de+Fd dt
5= Ydt " %de 3 dt

Then, we can rewrite the derivatives as:

dx i ax du ax dv dy dydu , dydv dz . az du 0z dv
dt  dudt ' ovdt ’ dt dudt  dvdt ’ dt dudt vt

So, the line integral is rewritten as:
f 6 6y 62 du 6 ay d0z_dv

Using Green’s theorem, we can rewrite this as:

6y 0z 6y 0z
au 617

This can be simplified to be rewritten as:

au Jv Jdvou

0z ox

dudv dvou

f 6F3 aF2 ayaz ayaz> (6F1 6F3)<azax azax) 0F, O0F, 0xady
dx Jdy 0udv

Now lets try and use the hypercross product and its associated “n-curl” to write an identity that
works in other dimensions since the cross product cannot be applied to a vector field in R* or
greater. Now the surface is parametrized as:

®d(u,v) = x(u,v),y(u,v),z(u,v),w(u,v))

And the corresponding boundary is:

B(t) = x(u®),v(®),y(u®),v(®),z(u®),v®), w(u®), v(t)))

The unit tangent vectors to the surface are:



- 0X - 0X
du v
oy ay
T _ |ou T _ | ov
Tw= |5, and T, = |,
ou v
ow ow
-ou- -0V -

dy 0z 0y 0z dyow ow dy]

Judv dvadu Judv Oudv
0z 0dx 0z 0x owodx JOw dx

T.XT, =305y avou  ouov 9vou
dxdy 0dyodx 0

duov ouov  9x9y 0Oyox

0 Judv Jdudv-

Now we can take the line integral of the vector field along the boundary.

fﬁ d*—be dx+de+FdZ+Fdet
ST Mar T T T ae

Then, we can rewrite the derivatives as:

dx i ax du ax dv dy dydu , dydv
dt  dudt ' ovdt ’ dt oudt  dvdt’

dz _ 9zdu , 9zdv dw _ dwdu E)w dv
dt  dudt Odvdt > dt dudt = Odvadt
So, the line integral is rewritten as:

J‘F6x+F6y+F62+F6W du+F6x+F6y+Faz Faw dvdt
gpthg thgthgd @t g thg thgthy)

As in the previous case we use Green’s theorem to rewrite this as:

62 6 0z aw

6 617

dA

This simplifies to the expression:



ﬁ‘ <6F3 dF, <ay dz 0dy 62) N <6F1 6F3> (az dx 0z ax)

dy Judv Odvou dz 0x/\dudv Jvadu
dF, O0F,\ /0x0dy 0dydx J0F, O0F,\ 0wdx 0w 0x
+(E‘@)(a%‘a%)+(m‘a)(a%‘%a)
dF, O0F,\ 0ydw dyow 0F; O0F,\ (0zow 0dwO0z
<W_W) (%%_%E) <W_E> (%%_5%)

If we use the notation: (V Xp )i to represent the i-th column of the “4-curl” matrix, and (f; X

f;)i to represent the i-th column of that matrix then we can write the identity:

fﬁ_dgzﬁ(vx,z)l. (LXT) +(vEF) - (LX)

(aF2 6F1> <axay ayax)+<aF3 6F4) <azaw awaz> "
dx dy/\oudv OJdudv ow 0z/\Odudv OJuadv

This can be written for the general “n-curl” to relate line integrals of a vector field F=

F,
F,
F3
. | on the boundaries of surfaces which are maps from R? to R™ that are parametrized as
]
®d(u,v) = (x1(u,v), x,(1,v), x3(u,v) ... ... X, (u,v)) . The more general identity here is:

n-—2

[Fas=[[Yotp (MET) -0-9(2-50) (G5 -5250)

i=1

+ii 6Fl aF} axlax] axjaxl dA
, \0x; 0x;)\dv du Ov Ju

Which holds for all n > 3. This shows that the line integral about a curve in R™ which is the
boundary of some surface is 0 if this vector field is a gradient field. Because of this, we can
conclude that the work done along any path from one point to another is equal if there is a
conservative force field, and the work done along a closed loop is zero.



Notes: coordinate system should be modified for vectors in 4-space that have three non-zero
entries so that the x and y coordinates contain non-zero values.

The hypercross product of any dimension n, while not useful for curves (1 degree of
freedom), 3-manifolds (3 degrees of freedom), or any higher dimensional manifolds, can be
useful for evaluating areas of surfaces (geometric objects with 2 degrees of freedom) as well as
the integral of scalar functions over these surfaces in any dimension n. For curves, the arc length
formula should be used, while for 3 and higher dimensional manifolds wedge products and
differential forms should be used to find the content since these generate the volume forms of
vectors in R™. In order to find relate the flow a vector field on the boundary of a manifold to the
flux through the manifold differential forms should be used.

The area of a surface in R" is given by:

\/det([& XnE]T[a XnE]>

A(S)=]f 9x0y 0y 9xus dudv
(auav auav)

And the integral of a scalar valued function f(®(u,v)) is

\/det([& XnE]T[a XJ])

Gxdy _0yox
(6u v Odudv

dudv

|| ras = [[ reecaw

)n—3

It should be noted that unlike the wedge product which gives the volume spanned by the
vectors whose product is taken, the hypercross product gives the area scaled by a factor that is
directly proportional to the dimension of the vectors. Unlike the wedge product, it also cannot be
applied to more than two vectors and does not produce a bivector or “2-blade” when the product
of two vectors is taken for any dimension except D=4. Another difference is that this produces
the orthogonal complement of the two vectors whose product is taken regardless of the
dimension.

VI.  Inverse n-hypercross product



We can also find the product of a vector and a matrix to find the orthogonal complement of a

aq
. . . N 1) .
vector and a bivector using the same method as before. Given a vector a = | " | and a matrix B =
3
Ay
by ¢
b, c

b Ci , the inverse 4-hypercross product would be:
3

b, Ca

[a1b2 (agcs — azcy) + acy(aghy — aghs) + agay(bscy — C3b4)]

i XB _ [ (aiby —ayby)(asc3 — azcy) — (arhby — azby)(acq — ascy) |
(a1b, — azby)(ascq — agcy) — (ay¢; — azcy)(arby — agbq)
(aic3 — aszcy)(agb, — azby) — (a;c; — azcq)(aby — azby)

The inverse 5-hypercross product as well as the higher dimensional analogues are significantly
more complicated.
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