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1. Abstract

An investigation was conducted to study the relationship between the values of the internal n-
angles between the facets of hypercubes, polytopes with Schlafli symbol {4,3,3,3....3} (at the
corners of these objects), and particular values of the Riemann zeta function at even, positive
integers. Calculations were performed for dimensions 4n and 4n + 1 for 1 < n < 6. No
immediately apparent relation was found for any dimension other than those that were powers of
two, d = 4,8, 16. The study was therefore furthered to check if the relation that was found for
these dimensions held for higher powers of two. It was found that the same rule applied to
relating the internal n-angles of the n-hypercube to the Riemann zeta function of all dimensions
2% for 2 < k < 8, thus the relation held for all dimensions that are powers of two up to d = 256.
No higher dimensions were checked as the numbers being calculated reached the limits of the
ability to give meaningful results for the calculator being used. The von-Staudt Clausen theorem
and conjectures related to the Fermat numbers were invoked to confirm that this relation held for
many dimensions that satisfy the property of being a power of 2. More general formulas that
hold for all dimensions that are powers of 2 were derived towards the end.

II. Introduction

Concepts from number theory such as irrational numbers often have important implications
in geometry. Irrational numbers that are square roots of natural numbers are related to the
diagonals of n-cubes, ratios found in perfect triangles, as well as the characteristics of polytopes
in any dimension. This study was motivated by the common relations between these two areas of
mathematics, and an attempt to see if there was any connection in terms of angles.

The common 2-dimensional notion of an angle can be generalized to any dimension by
recognizing that an angle when measured in radians is related to the proportion of the total
normalized circumference 2m that is traversed by an arc of the circle that is between two lines



that pass through and meet at the center of the circle. If we look at a sphere and the three planes
that meet and pass through the center point, this will give us the 3-angle of an intersection,
commonly known as the solid angle and measured in steradians. For the purpose of simplicity,
the equivalent for higher dimensions n will be called the n-angle and the measure term will be
called n-radians in the remaining portion of this paper.

Since a circle’s circumference is 2mr, the maximum angle before repeated equivalent angles
will be found is 27 radians, or the circumference divided by the radius. The maximum 3-angle in
a sphere would therefore be 41 steradians, the surface area divided by the radius squared. The
general maximum n-angle in an n-dimensional space is the total facet content of the ball divided

by the radius raised to the power n-1. For example, the maximum 5-angle in a 5-dimensional
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space would be 3r — = % This relation is used to calculate the n-angles in the corners of

hypercubes. The formula for the surface content of a ball of dimension n is
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where V},(R) is the content of the ball of dimension n, 1“(Z—il) R™, and I'(x) is the gamma
2

function, [ Ooo t*~Le~tdt which satisfies the property I'(x + 1) = xI'(x). Therefore, the

regularized facet content or maximum n-angle before repetition is
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The corners of a hypercube in any dimension therefore sum to equal % n-radians, since the
2

number of n-ants (n-dimensional equivalents of quadrants and octants) in n-dimensions is the

same as the number of corners of the n-hypercube, meaning that the full n-angle covered by the
n-sphere is equivalent to the sum of the angles of the corners of an n-hypercube. Since there are
2™ n-ants in an n-dimensional space, as well as 2" corners in an n-cube which have an equal n-
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angle, the measure of each n-angle in n-radians is YT = o
2 2

The Riemann zeta function is a special function from analysis and number theory that is
considered to be important in various areas of mathematics. The Riemann zeta function is related
to the distribution of prime numbers and the prime number theorem, arises in definite integration,
and 1s prominent in physics. The value of the function at positive integer even numbers is related
to the Basel problem of the 17" and 18™ centuries. It is also the subject matter of the Riemann



zeta hypothesis problem, which posits that all the non-trivial zeroes of this function in a complex

space lie on the critical line % + it. The function itself is defined in terms of the infinite sum
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The values of this function at positive, even integers are known to be related to the

mathematical constant  as well as the Bernoulli numbers B,, and the factorial function. They are
related by the following formula:

(=D (2m)* By
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¢(2k) =

This yields the first few values of the zeta function that are positive, even integers to be:
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Upon noticing the similarity of these values of the zeta function with the n-angles at the
corners of hypercubes, at dimensions 4n and 4n + 1 for n > 1, namely the first one where the

2 2
corner 4-angle of a 4-cube is % and the value of {(2) is %, we are prompted to further

investigate to see if there is a relationship between this concept of the Riemann zeta function and
the geometry of n-hypercubes.

III.  Hypercube Internal Angles (Calculation)



The internal n-angles of n-hypercubes of the aforementioned dimensionality in units of n-

radians were computed. They were then compared with the zeta function {(k), where k = % for

dimensions n = 4y, and nT_l for dimensions n = 4y + 1. The internal n-angle at the corners,

which will be termed for the rest of this paper as Ang(C,,), measured in n-radians, was factorized
into the Riemann zeta function of the aforementioned evaluation, and another term which was
prime factorized in order to see if there was a pattern that related the Riemann zeta function to
the corner. The results are given in the following table.

Dimension Ang(C,) Ang(C,) = x x {(k)
n
4 w2 3 w2 3 7?
_ _ — = — ok —
8 4 6 22 6
5 2 1 2 1 n?
— — % — = — % —
12 2 6 21 6
8 m* 15 n* 5%3 7wt
—_— * — = X —
768 128 90 27 90
9 4 3 n* 3 4
— % — = * —
1680 56 90 23x7 90
12 ° 35 n® 7x5 x°
£ = %k
245670 16384 945 214 945
13 ° 3 ° 3 °
_— k = ES
1441440 4576 945 25x11%13 945
16 8 15 8 5x3 78
- * = *
165150720 262144 9450 218 9450
17 8 1 8 1 8
_— k = £
518918400 549120 9450 28 x5x%11+13 9450
20 10 33 w10 311 w10
%k = ES
190253629440 67108864 93555 226 93555
21 10 3 10 3 10
ES = ES
670442572800 21498880 93555 210 x5x%x13%17%19 93555




24 12 4095 691712 13x5%3%21 691112
* = *
334846387814400 2147483648 * 691 638512875 231 % 691 638512875

25 w2 15 691m12 5%3 691m12
k = %
2590590101299200 | 60858368 x 691 638512875 213 x17%19%21%691 638512875

Immediate investigation of the table reveals that there is a similarity for all the even
dimensions listed, because the denominator of the relating term (the term that is the quotient of
Ang(C,) and {(k)), is always a power of 2, excluding the case of d = 24. This can be explained

however by the fact that the Riemann zeta term in this dimension has a numerator that is not 1 *
n n

m2 and is instead 691 * m2. When factoring out 691 the denominator remains a power of 2. In all
the odd dimensions except d = 5 the denominator has other prime factors that are not 2. There is
no apparent pattern in the numerator of the relating term for odd or even dimensions.

There is no apparent pattern in the total set of terms we have observed therefore in this
factorization except for some sort of pattern in the subset of terms that are the even dimensions,
4n. To look more closely, we can observe what number 2 is exponentiated to in each term.

Dimension Exponent of 2 in denominator
4 2

8 7

12 14

16 18

20 26

24 31

There is no common difference between the exponents, of all orders. There is also no
multiplicative factor that relates one term to the next.

If we take an even smaller subset of these dimensions and observe only the dimensions
that are powers of 2 (by definition this is a subset of the even dimensions), d = 4,8,16, there is
an observable pattern, however. The exponent for d = 4 is 2, the exponent for d = 8 is 7, and
the exponent for d = 16 is 18. If we label n = log, d, and m = n — 1, the sequence 2, 7, 18 is
defined by the recursive formula

Hm+1 = 2t + (M + 2)

where py = 0. The next term in the sequence would be 41.




For consistency, we check if there is a pattern to be observed in the numerators of the
relating term for these dimensions. The numerator ford = 4is3 =3+ 1, ford = 8 itis 15 =
5x 3, and for d = 16 it is again 15 = 5 * 3. For the first two cases it is the case that the term is

equal to (g + 1)(% — 1) but we can’t use this formula since it is not the case for d = 16. We

observe however that (g + 1) is prime for d = 4, 8, but not so for d = 16. This notable

difference is enough to make this relating term distinguishable, and to prompt further
investigation to see if the relating term follows the same rule for dimensions that are higher
powers of 2.

IV.  Deriving relationship with Riemann Zeta Function from direct calculation

Investigating the relationship between the Riemann Zeta function and the internal angles of a

hypercube for d = 32 yields the interesting result:

Dimension n | 32

Ang(C,) m'e
2808209322188734464000

Ang(C,) 255 3617m16 17 * 15 3617m16
ES = £
= x * {(k) 241 x 3617 325641566250 241 %3617 325641566250

The aforementioned pattern is observed for the numerator of the relating term; however, the
denominator is slightly different. While 41 is the expected power that 2 is raised to based on the
formula we identified for the earlier terms, 3617 is not a power of 2. However, we notice that
any value {(2n) can be written in the form

b
¢(2n) = —n"
Qn

where b,, and a,, are coprime, positive integers for all n given in the following table provided by
the OEIS:



10

11

12

13

14

15

16

an bn

6 1

90 1

945 1

9450 1

93555 1
638512875 691
18243225 2
325641566250 3617
38979295480125 43867
1531329465290625 174611
13447856940643125 155366
201919571963756521875 236364091
11094481976030578125 1315862
564653660170076273671875 6785560294

5660878804669082674070015625 | 6892673020804

62490220571022341207266406250 | 7709321041217

We previously saw bg = 691 for d = 24, and now we see bg = 3617. We can apply the

same rule we used for initially distinguishing the denominators as powers of two, and account for
this term. Doing this yields a rule that holds for all dimensions that are powers of 2 that we have
checked so far.

(Jprl’me + 1) * (Jprime - 1)

Ang(Can) = 21m % (byn-z)

* (2" h




where
HUm+1 = 2ty + (M + 2)
Ho =0
m=n-—1

as explained previously, and Xy, is the first power of 2 smaller than 2™ in which (Jpn-me + 1)
is a prime number.

Checking this result for the next few cases requires calculations that include extremely
large numbers. We will therefore stop at n = 8. The next terms in the sequences would be 88,
183, and 374. The relation was found to hold for all n up to and including 8. The results are in
the following tables (sorry for the miniscule text size):

Dimension Ang(Cyn)
n
64 32
75842300106513211440254848342034628413006807040000000
128 337323325121478683780454353294367996350443621952124657714538831;354016429985548488767462936789327475580873788620800000000000000
256 R RS
Dimel;Sion (Jprime + 1) * (Jprime - 1) " ((Zn_l)
2 2Hm (bzn—Z)
64
17 = 15 7709321041217m3?
*
288 x 7709321041217 62490220571022341207266406250
128 17 x 15 . 1067838301478665298863854449791426479420171%*
2183 « 106783830147866529886385444979142647942017 7016125464333780819415029165079856003277532103367584994756141174316406250
256 17 %15

2374 % 267754707742548082886954405585282394779291459592551740629978686063357792734863530145362663093519862048495908453718017
267754707742548082886954405585282394779291459592551740629978686063357792734863530145362663093519862048495908453718017 7128

" 11559014813753760487180615986618417162826237849871010673971153163310665317924617020949594183800534958741740629952520374467544 11181755833 166510460555313553380453959107398986816406250

257255

If the relation holds for n=9 the next term should be ————
2757*(1127)

* ((256), since 257 is a prime

number. Thus, we have found a sufficient formula relating the Riemann zeta function to the
internal n-angles of hypercubes, measured in n-radians, for dimensions that are powers of 2
excluding 2 itself, that holds for all cases that have been tested. To test higher cases, say to n=50,




would require an immense amount of time and probably a supercomputer. And even if this was
performed, there is a limit to what can be tested with a computer, so to see if the formula holds
for all n we should start to do some analysis.

V. Direct algebraic derivation of formula from Euler’s formula for zeta at positive
even integers and a result related to the von Staudt Clausen theorem

We can start by noticing the similarities between the right- and left-hand sides of the
equation. The facet content formula includes the gamma function, I'(x) evaluated at x = 21,
We note that the Riemann zeta function can be written in terms of the expression

1 00 ux—l
‘)= T fo ou — 1

and that in our equation it is evaluated at x = 2™1. So, we can cancel the gamma function on

both sides to get the expression,

. S 002" 711
(lprlme + 1) * (Jprlme 1) . u du = Zl_znnzn—1
2Hm x (byn-2) o e*—1

For n=2-8. The integral on the left-hand side is non-elementary, and the recursive formula, the
b,n-2 numbers, as well as the rule for ,,.;,,, makes it a time-consuming project to try and see

what happens in the general case for any n, so this topic will not be discussed in this paper.

Another approach is to calculate the subtended angle at the corners by using the formula that
was provided earlier for the Riemann zeta function at even positive integers, which is known as
Euler’s formula. The formula is presented earlier in this work. Manipulation of the formula solving

for m yields
ok 0(2k) * 2(2k)!
T2k 4 (_1)k+1 * By
We set 2k = p to get
» __ §(p)*2(p)!
= D
2r « (-1)2*' « B,

d

T2
N
24-11(3)

The formula for the internal d-angle of a hypercube is Setting d = 2p we get



7-[17
22r~1T(p)

As the formula, which means that

Ang(C,,)2%7T(p) = nP

So we derive a formula for even dimensions

¢(p) * 2(p)!
2P % (_1)%’1 x B, * 22P71[(p)

Ang(Czp) =

Which can be simplified to
¢(p) *xp

(D)2« B+ 2972

Ang(Czp) =

Noting that T'(p) = (p — 1)!, yielding a general formula for even dimensions. The Bernoulli
number can be separated into a numerator and a denominator, so we can write the formula:

¢(p) *p = D,

(~DZ" * N, » 25772

Ang(Czp) =

Where D,, and N,, are the denominators and numerators respectively. Setting p = 2™ to check if
the relationship found previously holds, we find that

(2™) * 2" * Dyn  {(2™) * Dyn
|Nyn| * 232M-2 |Nyn| * 23(2™M)-2-n

Ang(C2n+1) =

Settingm = n + 1 we get

Z(Zm_l) * Dzm—l

[N ym-1| * 23@2Mm )-1-m

Ang(Cym) =

The denominators of the even Bernoulli numbers are determined from a theorem due to
Graham et al (1994) closely related to the von Staudt Clausen theorem which shows that the
denominator of the Bernoulli numbers of even indices are derived from the following formula:

denom(B,y,) = 1_[ t
(t=1)|2k



Where t is a prime number and the notation x|y means that y is divisible by x. Since the dimensions
are all of the form 2", this implies that all t are Fermat primes, in addition to the number 2 (since
the only numbers that are of the form 2™ + 1 that are prime are the Fermat primes). The 2 makes
us rewrite the formula as

(2™ D 1L A

Where []; Fy denotes the product of the Fermat primes smaller than 2™ .The sequence

3(2™™1) — 2 — m starting at m=2 can be shown algebraically to be equivalent to the sequence we
identified previously as

Hos1 = 21, + (V + 2)
Ho =0
v = m — 1 starting at m=2, since f(x) = 3(2*"1) — 2 — x satisfies the equation

fG)=2+fx-D+((x-1)+2)

So, to check for which dimensions the relation found previously is confirmed to hold up to, since
all the other terms are the same, we therefore only have to refer to the Fermat numbers and
conjectures related to their property of being prime. Fermat numbers are all numbers where n >
1 of the form 22" + 1. The first five Fermat numbers are known to be prime however it is not
known whether or not there are any more prime Fermat numbers. This reveals an interesting
connection between the Bernoulli numbers and the 3. term, which is closely related to the
von Staudt Clausen theorem, as well as confirmation that the sequence we obtained for p,, was
correct.

So, we find that the rule for 3, holds for several relatively “low” dimensions but
changes in accordance with the change of the nature of the Fermat numbers. We change our
criterion for Ay jme to be the product of the prime Fermat numbers. It is known that the expression
2™ 4+ 1 is composite for all integers n that are not Fermat primes. It is conjectured that the first 5
prime Fermat numbers are the only ones that exist. If this conjecture holds, the formula we derived
from direct calculation holds for all dimensions, if not, it must be adjusted slightly. It changes from
(lpn-me + 1) * (Qprime — 1) to [[3 5 where Fy are all the prime Fermat numbers. However, this
change holds for both cases, so this can be termed as the general formula that is confirmed for all
dimensions. So, whether or not the first formula is a general formula is directly related to the open
question of whether there are infinitely many, more, or only the 5 known Fermat primes. The
general formula therefore is

[LA
*

Ang(Cyn) = pTT—

(O



VI.  Extension to other polytopes

The hypercube is one of three regular polytopes that exist in any dimension greater than 2, the
others being the orthoplex, a polytope with Schlafli symbol {3,3,3....4} and the simplex,
{333....3}. The orthoplex, also known as the cross polytope, is the dual of the hypercube. Future
study may see if there is a relationship between the internal n-angles of other polytopes, regular
and nonregular, and the Riemann zeta function.

VII. Hypercube zeta conjecture — an extension of conjectures related to the Fermat
primes

From knowledge of the Bernoulli numbers, the direct calculation which has shown that the
relation holds exactly for, n = 2,3, ...,8, and synthesizing this with the algebraic formulas we
conclude that the relationship between the internal 2™-angles between the 2™-1 facets of
hypercubes and the Riemann zeta function in which it is proportional to the ratio

(Jprime*' 1)*(3prime_ 1)
2Hm *(bzn—Z)

dimensions, the first one for several “low” dimensions) , holds for dimensions that have
dimensionality 2" with n > 2 . If the conjecture that there are only 5 Fermat primes holds then
it would be proven that this formula holds for all dimensions. If not, we can use the two formulas
given in this paper to describe the relationship between the Riemann zeta function and the
hypercube’s internal n-angles. They are related by a term 3, Which is itself a power of 2 with

, with all the aforementioned definitions ascribed (the second criterion for all

a property that was described in the previous section, p,,, another term that 2 is raised to the
power of and that is given by the sequences listed in the preceding sections, as well as b, which
is a term that is found in the numerator of the zeta function at positive, even, integer values.
Information about prime numbers is in most of the terms on the right hand side, so the relating
term which relates these quantities related to prime numbers and n-cubes is the u,, sequence,
which has been proven to be the case for a few select cases as well as for the general case from
the formula relating to Bernoulli numbers. Therefore, this result is a significant sequence since it
relates to the internal n-angles of n-cubes and the zeta function at powers of 2. This sequence
shows up in other places in mathematics such as the hook partitions of combinatorics and
number theory. So, all in all, it seems as if Bernoulli numbers, zeta functions, Fermat primes,
hook partitions, and n-cubes have a strange relationship with one another. This suggests a



relationship between number theory and geometry which may be extendable to other regular and
uniform polytopes.

VIII. Extension to the Dirichlet Lambda function

Using a known relationship between the Riemann zeta function and the Dirichlet lambda
function, we can extend this result to relate the internal k-angles of hypercubes to that function as
well. The Dirichlet lambda function is defined as such:

It can be related to the Riemann zeta function by the following formula:

2V -1

A(v) = 5

¢(v)

By substituting this relationship into the previous equation, we get the relationship between the
internal k-angles of hypercubes in dimensions that are powers of 2 to the Dirichlet lambda
function.

n-1
22

Hl Fl % /1(271_1) %

Ang(Can) = byn—2 23" 1)—2-n 4 (22”—1 -1)

This can be simplified to the following formula:

[LF*a2"h
bon—z * 2277271 5 (2277 — 1)

Ang(Cyn) =



The expression 2™ — 2 — n is the generating expression for the sequence 0, 3, 10, 25, 56, etc.
The other term is a subset of the Mersenne numbers, as it is equal to M,n-1 for dimension 2™.
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Calculations performed using Desmos Scientific, Number Empire, and Big Number Calculator:

https://www.calculator.net/big-number-calculator.html

https://www.desmos.com/scientific

https://www.numberempire.com/

Calculator Screenshots for equivalencies between the two terms:




2
3 =1.23370055

3-1
2., 6 =1.23370055
7,[4
53 Ta1:00 =0.126834754
4
7% =0.126834754

16
I _ —14
2808209322 188 738864000 =3.20603668 x 10

(17-15) _ 3617a'° e
3617231 325641566250 =3.20603668 x 10

8
5.3 — % . -5
= gy 574537672 x 10

8
7T _ y - -5
165150720 =5.74537672 x 10

(17-15-732)

58 . . = 1.06877043 x 103"
277 -62490220571022341 207266406250

32
T
75842300106513211440254 848 3420346284130

= 1.06877043 x 10”37

(17-15) —04
J185  T0161254643337808194150291650 = 1.94780502 x 10
il —1.94780502 x 10~ %4
153294367 996350443621952124657 714538832354(  — 1-94780502 < 10
(17-15) —997
5374 1155901481375376048718061598 = 247505405 x 10
12 =
L 9.47505405 x 10 227

156594 386 881500822704 840042 883298820595 87¢



