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I. Abstract 

 

An investigation was conducted to study the relationship between the values of the internal n-
angles between the facets of hypercubes, polytopes with Schlafli symbol {4,3,3,3….3} (at the 
corners of these objects), and particular values of the Riemann zeta function at even, positive 
integers. Calculations were performed for dimensions 4𝑛 and 4𝑛 + 1 for 1 ≤ 𝑛 ≤ 6. No 
immediately apparent relation was found for any dimension other than those that were powers of 
two, 𝑑 =  4, 8, 16. The study was therefore furthered to check if the relation that was found for 
these dimensions held for higher powers of two. It was found that the same rule applied to 
relating the internal n-angles of the n-hypercube to the Riemann zeta function of all dimensions 

2௞ for 2 ≤ 𝑘 ≤ 8, thus the relation held for all dimensions that are powers of two up to 𝑑 = 256. 
No higher dimensions were checked as the numbers being calculated reached the limits of the 
ability to give meaningful results for the calculator being used. The von-Staudt Clausen theorem 
and conjectures related to the Fermat numbers were invoked to confirm that this relation held for 
many dimensions that satisfy the property of being a power of 2. More general formulas that 
hold for all dimensions that are powers of 2 were derived towards the end.  

 

II. Introduction 

 

Concepts from number theory such as irrational numbers often have important implications 
in geometry. Irrational numbers that are square roots of natural numbers are related to the 
diagonals of n-cubes, ratios found in perfect triangles, as well as the characteristics of polytopes 
in any dimension. This study was motivated by the common relations between these two areas of 
mathematics, and an attempt to see if there was any connection in terms of angles. 

The common 2-dimensional notion of an angle can be generalized to any dimension by 
recognizing that an angle when measured in radians is related to the proportion of the total 
normalized circumference 2𝜋 that is traversed by an arc of the circle that is between two lines 



that pass through and meet at the center of the circle. If we look at a sphere and the three planes 
that meet and pass through the center point, this will give us the 3-angle of an intersection, 
commonly known as the solid angle and measured in steradians. For the purpose of simplicity, 
the equivalent for higher dimensions n will be called the n-angle and the measure term will be 
called n-radians in the remaining portion of this paper.  

Since a circle’s circumference is 2𝜋r, the maximum angle before repeated equivalent angles 
will be found is 2𝜋 radians, or the circumference divided by the radius. The maximum 3-angle in 
a sphere would therefore be 4𝜋 steradians, the surface area divided by the radius squared. The 
general maximum n-angle in an n-dimensional space is the total facet content of the ball divided 
by the radius raised to the power n-1. For example, the maximum 5-angle in a 5-dimensional 

space would be 
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hypercubes. The formula for the surface content of a ball of dimension 𝑛 is 
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where 𝑉௡(𝑅) is the content of the ball of dimension n, 
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 𝑅௡, and Γ(𝑥) is the gamma 

function, ∫ 𝑡௫ିଵ𝑒ି௧𝑑𝑡
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 which satisfies the property Γ(𝑥 + 1) = 𝑥Γ(𝑥). Therefore, the 

regularized facet content or maximum n-angle before repetition is 
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The corners of a hypercube in any dimension therefore sum to equal 
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 n-radians, since the 

number of n-ants (n-dimensional equivalents of quadrants and octants) in n-dimensions is the 
same as the number of corners of the n-hypercube, meaning that the full n-angle covered by the 
n-sphere is equivalent to the sum of the angles of the corners of an n-hypercube. Since there are 
2௡ n-ants in an n-dimensional space, as well as 2௡ corners in an n-cube which have an equal n-

angle, the measure of each n-angle in n-radians is  
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.  

The Riemann zeta function is a special function from analysis and number theory that is 
considered to be important in various areas of mathematics. The Riemann zeta function is related 
to the distribution of prime numbers and the prime number theorem, arises in definite integration, 
and is prominent in physics. The value of the function at positive integer even numbers is related 
to the Basel problem of the 17th and 18th centuries. It is also the subject matter of the Riemann 



zeta hypothesis problem, which posits that all the non-trivial zeroes of this function in a complex 

space lie on the critical line 
ଵ

ଶ
+ 𝑖𝑡. The function itself is defined in terms of the infinite sum 

ζ(n) = ෎
1

𝑘௡

ஶ

௞ୀଵ

 

The values of this function at positive, even integers are known to be related to the 
mathematical constant 𝜋 as well as the Bernoulli numbers 𝐵௡ and the factorial function. They are 
related by the following formula: 

 

ζ(2k) =
(−1)௞ାଵ(2𝜋)ଶ௞𝐵ଶ௞

2(2𝑘)!
 

 

This yields the first few values of the zeta function that are positive, even integers to be: 

 

ζ(2) =
𝜋ଶ

6
 

ζ(4) =
𝜋ସ

90
 

ζ(6) =
𝜋଺

945
 

ζ(8) =
𝜋଼

9450
 

 

Upon noticing the similarity of these values of the zeta function with the n-angles at the 
corners of hypercubes, at dimensions 4𝑛 and 4𝑛 + 1 for 𝑛 ≥ 1, namely the first one where the 

corner 4-angle of a 4-cube is 
గమ

଼
 and the value of ζ(2) is 

గమ

଺
, we are prompted to further 

investigate to see if there is a relationship between this concept of the Riemann zeta function and 
the geometry of n-hypercubes. 

 

 

III. Hypercube Internal Angles (Calculation) 



 

The internal n-angles of n-hypercubes of the aforementioned dimensionality in units of n-

radians were computed. They were then compared with the zeta function ζ(𝑘),  where 𝑘 =  
௡

ଶ
 for 

dimensions 𝑛 = 4𝑦,  and 
௡ିଵ

ଶ
 for dimensions 𝑛 = 4𝑦 + 1. The internal n-angle at the corners, 

which will be termed for the rest of this paper as 𝐴𝑛𝑔(𝐶௡), measured in n-radians, was factorized 
into the Riemann zeta function of the aforementioned evaluation, and another term which was 
prime factorized in order to see if there was a pattern that related the Riemann zeta function to 
the corner. The results are given in the following table. 

 

Dimension 
𝒏 

𝑨𝒏𝒈(𝑪𝒏) 𝑨𝒏𝒈(𝑪𝒏) = 𝒙 ∗ 𝛇(𝐤)    

4 𝜋ଶ

8
 

3

4
∗

𝜋ଶ

6
=

3

2ଶ
∗

𝜋ଶ

6
  

5 𝜋ଶ

12
 

1

2
∗

𝜋ଶ

6
=

1

2ଵ
∗

𝜋ଶ

6
 

8 𝜋ସ

768
 

15

128
∗

𝜋ସ

90
=

5 ∗ 3

2଻
∗

𝜋ସ

90
 

9 𝜋ସ

1680
 

3

56
∗

𝜋ସ

90
=

3

2ଷ ∗ 7
∗

𝜋ସ

90
 

12 𝜋଺

245670
 

35

16384
∗

𝜋଺

945
=

7 ∗ 5

2ଵସ
∗

𝜋଺

945
 

13 𝜋଺

1441440
 

3

4576
∗

𝜋଺

945
=

3

2ହ ∗ 11 ∗ 13
∗

𝜋଺

945
 

16 𝜋଼

165150720
 

15

262144
∗

𝜋଼

9450
=

5 ∗ 3

2ଵ଼
∗

𝜋଼

9450
 

17 𝜋଼

518918400
 

1

549120
∗

𝜋଼

9450
=

1

2଼ ∗ 5 ∗ 11 ∗ 13
∗

𝜋଼

9450
 

20 𝜋ଵ଴

190253629440
 

33

67108864
∗

𝜋ଵ଴

93555
=

3 ∗ 11

2ଶ଺
∗

𝜋ଵ଴

93555
 

21 𝜋ଵ଴

670442572800
 

3

21498880
∗

𝜋ଵ଴

93555
=

3

2ଵ଴ ∗ 5 ∗ 13 ∗ 17 ∗ 19
∗

𝜋ଵ଴

93555
 



24 𝜋ଵଶ

334846387814400
 

4095

2147483648 ∗ 691
∗

691𝜋ଵଶ

638512875
=

13 ∗ 5 ∗ 3 ∗ 21

2ଷଵ ∗ 691
∗

691𝜋ଵଶ

638512875
 

25 𝜋ଵଶ

2590590101299200
 

15

60858368 ∗ 691
∗

691𝜋ଵଶ

638512875
=

5 ∗ 3

2ଵଷ ∗ 17 ∗ 19 ∗ 21 ∗ 691
∗

691𝜋ଵଶ

638512875
 

 

 Immediate investigation of the table reveals that there is a similarity for all the even 
dimensions listed, because the denominator of the relating term (the term that is the quotient of  
𝐴𝑛𝑔(𝐶௡)  and ζ(k)), is always a power of 2, excluding the case of 𝑑 = 24. This can be explained 
however by the fact that the Riemann zeta term in this dimension has a numerator that is not 1 ∗

𝜋
೙

మ  and is instead 691 ∗ 𝜋
೙

మ . When factoring out 691 the denominator remains a power of 2. In all 
the odd dimensions except 𝑑 = 5 the denominator has other prime factors that are not 2. There is 
no apparent pattern in the numerator of the relating term for odd or even dimensions. 

 There is no apparent pattern in the total set of terms we have observed therefore in this 
factorization except for some sort of pattern in the subset of terms that are the even dimensions, 
4𝑛. To look more closely, we can observe what number 2 is exponentiated to in each term.  

Dimension Exponent of 2 in denominator 

4 2 

8 7 

12 14 

16 18 

20 26 

24 31 
 

There is no common difference between the exponents, of all orders. There is also no 
multiplicative factor that relates one term to the next.  

 If we take an even smaller subset of these dimensions and observe only the dimensions 
that are powers of 2 (by definition this is a subset of the even dimensions), 𝑑 = 4,8,16, there is 
an observable pattern, however. The exponent for 𝑑 = 4 is 2, the exponent for 𝑑 = 8 is 7, and 
the exponent for 𝑑 = 16 is 18. If we label 𝑛 =  logଶ 𝑑,  and 𝑚 = 𝑛 − 1,  the sequence 2, 7, 18 is 
defined by the recursive formula  

𝜇௠ାଵ = 2𝜇௠ + (𝑚 + 2) 

where 𝜇଴ = 0. The next term in the sequence would be 41. 



 For consistency, we check if there is a pattern to be observed in the numerators of the 
relating term for these dimensions. The numerator for 𝑑 = 4 is 3 = 3 ∗ 1, for 𝑑 = 8 it is 15 =

5 ∗ 3, and for 𝑑 = 16 it is again 15 = 5 ∗ 3. For the first two cases it is the case that the term is 

equal to (
ௗ

ଶ
+ 1)(

ௗ

ଶ
− 1) but we can’t use this formula since it is not the case for 𝑑 = 16. We 

observe however that (
ௗ

ଶ
+ 1) is prime for 𝑑 = 4, 8, but not so for 𝑑 = 16. This notable 

difference is enough to make this relating term distinguishable, and to prompt further 
investigation to see if the relating term follows the same rule for dimensions that are higher 
powers of 2.  

 

IV. Deriving relationship with Riemann Zeta Function from direct calculation 

 

Investigating the relationship between the Riemann Zeta function and the internal angles of a 

hypercube for  𝑑 = 32 yields the interesting result: 

 

Dimension 𝒏 32 
𝑨𝒏𝒈(𝑪𝒏) 𝜋ଵ଺

2808209322188734464000
 

𝑨𝒏𝒈(𝑪𝒏)
= 𝒙 ∗  𝛇(𝐤)   

255

2ସଵ ∗ 3617
∗

3617𝜋ଵ଺

325641566250
=

17 ∗ 15

2ସଵ ∗ 3617
∗

3617𝜋ଵ଺

325641566250
 

 

The aforementioned pattern is observed for the numerator of the relating term; however, the 
denominator is slightly different. While 41 is the expected power that 2 is raised to based on the 
formula we identified for the earlier terms, 3617 is not a power of 2.  However, we notice that 
any value ζ(2n)  can be written in the form  

ζ(2n) =  
𝑏௡

𝑎௡
𝜋ଶ௡ 

where 𝑏௡ and 𝑎௡ are coprime, positive integers for all n given in the following table provided by 
the OEIS: 

 



n an bn 

1 6 1 

2 90 1 

3 945 1 

4 9450 1 

5 93555 1 

6 638512875 691 

7 18243225 2 

8 325641566250 3617 

9 38979295480125 43867 

10 1531329465290625 174611 

11 13447856940643125 155366 

12 201919571963756521875 236364091 

13 11094481976030578125 1315862 

14 564653660170076273671875 6785560294 

15 5660878804669082674070015625 6892673020804 

16 62490220571022341207266406250 7709321041217 

 

 We previously saw 𝑏଺ = 691 for 𝑑 = 24, and now we see 𝑏଼ = 3617. We can apply the 
same rule we used for initially distinguishing the denominators as powers of two, and account for 
this term. Doing this yields a rule that holds for all dimensions that are powers of 2 that we have 
checked so far.  

𝐴𝑛𝑔(𝐶ଶ೙) =
൫ℷ௣௥௜௠௘ + 1൯ ∗ (ℷ௣௥௜௠௘ − 1)

2ఓ೘ ∗ (𝑏ଶ೙షమ)
∗  ζ(2௡ିଵ)   



where  
𝜇௠ାଵ = 2𝜇௠ + (𝑚 + 2) 

𝜇଴ = 0 

𝑚 = 𝑛 − 1 

as explained previously, and ℷ௣௥௜௠௘ is the first power of 2 smaller than 2௡ in which ൫ℷ௣௥௜௠௘ + 1൯ 

is a prime number.  

 Checking this result for the next few cases requires calculations that include extremely 
large numbers. We will therefore stop at 𝑛 = 8. The next terms in the sequences would be 88, 
183, and 374. The relation was found to hold for all 𝑛 up to and including  8. The results are in 
the following tables (sorry for the miniscule text size): 

Dimension 
𝟐𝒏 

𝑨𝒏𝒈(𝑪𝟐𝒏) 

64 𝜋ଷଶ

75842300106513211440254848342034628413006807040000000
 

128 𝜋଺ସ

337323325121478683780454353294367996350443621952124657714538832354016429985548488767462936789327475580873788620800000000000000
 

 
256 

𝜋ଵଶ଼

174421098849471985214706628571555850350629281352330166168199805026150893824849921025127145496959526882560151456594386881500822704840042883298820595876830634263656036093891189560905695297445442530483286885667431609287462045754096109968645416038117459359359303680000000000000000000000000000000
 

 

 

Dimension 
𝟐𝒏 

൫ℷ𝒑𝒓𝒊𝒎𝒆 + 𝟏൯ ∗ (ℷ𝒑𝒓𝒊𝒎𝒆 − 𝟏)

𝟐𝝁𝒎 ∗ (𝒃𝟐𝒏ష𝟐)
∗  𝛇(𝟐𝒏ି𝟏)   

64  

17 ∗ 15

2଼଼ ∗ 7709321041217
∗

7709321041217𝜋ଷଶ

62490220571022341207266406250
 

128 17 ∗ 15

2ଵ଼ଷ ∗ 106783830147866529886385444979142647942017
∗

106783830147866529886385444979142647942017𝜋଺ସ

7016125464333780819415029165079856003277532103367584994756141174316406250
 

256 
17 ∗ 15

2ଷ଻ସ ∗ 267754707742548082886954405585282394779291459592551740629978686063357792734863530145362663093519862048495908453718017

∗
267754707742548082886954405585282394779291459592551740629978686063357792734863530145362663093519862048495908453718017𝜋ଵଶ଼

1155901481375376048718061598661841716282623784987101067397115316331066531792461702094959418380053495874174062995252037446754411181755833166510460555313553380453959107398986816406250
 

 

 

If the relation holds for n=9 the next term should be 
ଶହ଻∗ଶହହ

ଶళఱళ∗(𝒃
𝟐𝟕)

∗  ζ(256), since 257 is a prime 

number. Thus, we have found a sufficient formula relating the Riemann zeta function to the 
internal n-angles of hypercubes, measured in n-radians, for dimensions that are powers of 2 
excluding 2 itself, that holds for all cases that have been tested. To test higher cases, say to n=50, 



would require an immense amount of time and probably a supercomputer. And even if this was 
performed, there is a limit to what can be tested with a computer, so to see if the formula holds 
for all n we should start to do some analysis.  

 

 

V. Direct algebraic derivation of formula from Euler’s formula for zeta at positive 
even integers and a result related to the von Staudt Clausen theorem 

We can start by noticing the similarities between the right- and left-hand sides of the 
equation. The facet content formula includes the gamma function, Γ(x) evaluated at 𝑥 = 2௡ିଵ. 
We note that the Riemann zeta function can be written in terms of the expression 

ζ(𝑥) =  
1

 Γ(x) 
න

𝑢௫ିଵ

𝑒௨ − 1
𝑑𝑢

ஶ

଴

 

and that in our equation it is evaluated at 𝑥 = 2௡ିଵ. So, we can cancel the gamma function on 
both sides to get the expression, 

൫ℷ௣௥௜௠௘ + 1൯ ∗ (ℷ௣௥௜௠௘ − 1)

2ఓ೘ ∗ (𝑏ଶ೙షమ)
∗ න

𝑢ଶ೙షభିଵ

𝑒௨ − 1
𝑑𝑢

ஶ

଴

= 2ଵିଶ೙
𝜋ଶ೙షభ

  

For n=2-8. The integral on the left-hand side is non-elementary, and the recursive formula, the 
𝑏ଶ೙షమ numbers, as well as the rule for ℷ௣௥௜௠௘ makes it a time-consuming project to try and see 

what happens in the general case for any n, so this topic will not be discussed in this paper.  

Another approach is to calculate the subtended angle at the corners by using the formula that 
was provided earlier for the Riemann zeta function at even positive integers, which is known as 
Euler’s formula. The formula is presented earlier in this work. Manipulation of the formula solving 
for 𝜋 yields  

𝜋ଶ௞ =
ζ(2k) ∗ 2(2𝑘)!

2ଶ௞ ∗ (−1)௞ାଵ ∗ 𝐵ଶ௞
 

We set 2𝑘 = 𝑝 to get 

𝜋௣ =
ζ(p) ∗ 2(𝑝)!

2௣ ∗ (−1)
௣
ଶ

ାଵ ∗ 𝐵௣

 

 

The formula for the internal d-angle of a hypercube is 
గ

೏
మ

ଶ೏షభ୻(
೏

మ
)
. Setting 𝑑 = 2𝑝 we get 



 

𝜋௣

2ଶ௣ିଵΓ(𝑝)
 

As the formula, which means that  

𝐴𝑛𝑔൫𝐶ଶ௣൯2ଶ௣ିଵΓ(𝑝) = 𝜋௣ 

 

So we derive a formula for even dimensions  

𝐴𝑛𝑔൫𝐶ଶ௣൯ =  
ζ(p) ∗ 2(𝑝)!

2௣ ∗ (−1)
௣
ଶ

ାଵ ∗ 𝐵௣ ∗ 2ଶ௣ିଵΓ(𝑝)
 

Which can be simplified to  

𝐴𝑛𝑔൫𝐶ଶ௣൯ =  
ζ(p) ∗ 𝑝

(−1)
௣
ଶ

ାଵ ∗ 𝐵௣ ∗ 2ଷ௣ିଶ
 

Noting that Γ(𝑝) = (𝑝 − 1)!, yielding a general formula for even dimensions. The Bernoulli 
number can be separated into a numerator and a denominator, so we can write the formula: 

𝐴𝑛𝑔൫𝐶ଶ௣൯ =  
ζ(p) ∗ 𝑝 ∗ 𝐷௣

(−1)
௣
ଶ

ାଵ ∗ 𝑁௣ ∗ 2ଷ௣ିଶ
 

Where 𝐷௣ and 𝑁௣ are the denominators and numerators respectively. Setting 𝑝 =  2௡ to check if 

the relationship found previously holds, we find that  

𝐴𝑛𝑔(𝐶ଶ೙శభ) =  
ζ(2௡) ∗ 2௡ ∗ 𝐷ଶ೙

|𝑁ଶ೙| ∗ 2ଷ(ଶ೙)ିଶ
=

ζ(2௡) ∗ 𝐷ଶ೙

|𝑁ଶ೙| ∗ 2ଷ(ଶ೙)ିଶି௡
  

Setting 𝑚 = 𝑛 + 1 we get 

𝐴𝑛𝑔(𝐶ଶ೘) =  
ζ(2௠ିଵ) ∗ 𝐷ଶ೘షభ

|𝑁ଶ೘షభ| ∗ 2ଷ(ଶ೘షభ)ିଵି௠
 

The denominators of the even Bernoulli numbers are determined from a theorem due to 
Graham et al (1994) closely related to the von Staudt Clausen theorem which shows that the 
denominator of the Bernoulli numbers of even indices are derived from the following formula: 

𝑑𝑒𝑛𝑜𝑚(𝐵ଶ௞) = ෑ 𝑡
(௧ିଵ)|ଶ௞

 



Where 𝑡 is a prime number and the notation 𝑥|𝑦 means that y is divisible by x. Since the dimensions 
are all of the form 2௡, this implies that all 𝑡 are Fermat primes, in addition to the number 2 (since 
the only numbers that are of the form 2௡ + 1 that are prime are the Fermat primes). The 2 makes 
us rewrite the formula as  

𝐴𝑛𝑔(𝐶ଶ೘) =  
ζ(2௠ିଵ) ∗ ∏ 𝐹ℷℷ

|𝑁ଶ೘షభ| ∗ 2ଷ(ଶ೘షభ)ିଶି௠
 

Where ∏ 𝐹ℷℷ  denotes the product of the Fermat primes smaller than 2௠.The sequence  

 3(2௠ିଵ) − 2 − 𝑚 starting at m=2 can be shown algebraically to be equivalent to the sequence we 
identified previously as  

𝜇௩ାଵ = 2𝜇௩ + (𝑣 + 2) 

𝜇଴ = 0 

𝑣 = 𝑚 − 1 starting at m=2, since  𝑓(𝑥) =  3(2௫ିଵ) − 2 − 𝑥 satisfies the equation 

𝑓(𝑥) = 2 ∗ 𝑓(𝑥 − 1) + ((𝑥 − 1) + 2) 

So, to check for which dimensions the relation found previously is confirmed to hold up to, since 
all the other terms are the same, we therefore only have to refer to the Fermat numbers and 
conjectures related to their property of being prime. Fermat numbers are all numbers where 𝑛 ≥

1 of the form 2ଶ೙
+ 1. The first five Fermat numbers are known to be prime however it is not 

known whether or not there are any more prime Fermat numbers. This reveals an interesting 
connection between the Bernoulli numbers and the ℷ௣௥௜௠௘ term, which is closely related to the 

von Staudt Clausen theorem, as well as confirmation that the sequence we obtained for 𝜇௠ was 
correct. 

 So, we find that the rule for ℷ௣௥௜௠௘ holds for several relatively “low” dimensions but 

changes in accordance with the change of the nature of the Fermat numbers. We change our 
criterion for ℷ௣௥௜௠௘ to be the product of the prime Fermat numbers. It is known that the expression 

2௡ + 1 is composite for all integers n that are not Fermat primes. It is conjectured that the first 5 
prime Fermat numbers are the only ones that exist. If this conjecture holds, the formula we derived 
from direct calculation holds for all dimensions, if not, it must be adjusted slightly. It changes from 

൫ℷ௣௥௜௠௘ + 1൯ ∗ (ℷ௣௥௜௠௘ − 1) to ∏ 𝐹ℷℷ  where 𝐹ℷ are all the prime Fermat numbers. However, this 

change holds for both cases, so this can be termed as the general formula that is confirmed for all 
dimensions. So, whether or not the first formula is a general formula is directly related to the open 
question of whether there are infinitely many, more, or only the 5 known Fermat primes. The 
general formula therefore is  

𝐴𝑛𝑔(𝐶ଶ೙) =
∏ 𝐹ℷℷ

2ఓ೘ ∗ (𝑏ଶ೙షమ)
∗  ζ(2௡ିଵ)   



 

 

VI. Extension to other polytopes 

The hypercube is one of three regular polytopes that exist in any dimension greater than 2, the 
others being the orthoplex, a polytope with Schlafli symbol {3,3,3….4} and the simplex, 
{333….3}. The orthoplex, also known as the cross polytope, is the dual of the hypercube. Future 
study may see if there is a relationship between the internal n-angles of other polytopes, regular 
and nonregular, and the Riemann zeta function.  

 

 

VII. Hypercube zeta conjecture – an extension of conjectures related to the Fermat 
primes 

 

From knowledge of the Bernoulli numbers, the direct calculation which has shown that the 
relation holds exactly for, 𝑛 = 2,3, … ,8, and synthesizing this with the algebraic formulas we 
conclude that the relationship between the internal 2௡-angles between the 2௡-1 facets of 
hypercubes and the Riemann zeta function in which it is proportional to the ratio 
൫ℷ೛ೝ೔೘೐ାଵ൯∗(ℷ೛ೝ೔೘೐ିଵ)

ଶഋ೘∗(௕మ೙షమ)
, with all the aforementioned definitions ascribed (the second criterion for all 

dimensions, the first one for several “low” dimensions) , holds for dimensions that have 
dimensionality 2௡  with 𝑛 ≥ 2 . If the conjecture that there are only 5 Fermat primes holds then 
it would be proven that this formula holds for all dimensions. If not, we can use the two formulas 
given in this paper to describe the relationship between the Riemann zeta function and the 
hypercube’s internal n-angles. They are related by a term ℷ௣௥௜௠௘ which is itself a power of 2 with 

a property that was described in the previous section, 𝜇௠, another term that 2 is raised to the 
power of and that is given by the sequences listed in the preceding sections, as well as bn., which 
is a term that is found in the numerator of the zeta function at positive, even, integer values. 
Information about prime numbers is in most of the terms on the right hand side, so the relating 
term which relates these quantities related to prime numbers and n-cubes is the 𝜇௠ sequence, 
which has been proven to be the case for a few select cases as well as for the general case from 
the formula relating to Bernoulli numbers. Therefore, this result is a significant sequence since it 
relates to the internal n-angles of n-cubes and the zeta function at powers of 2. This sequence 
shows up in other places in mathematics such as the hook partitions of combinatorics and 
number theory. So, all in all, it seems as if Bernoulli numbers, zeta functions, Fermat primes, 
hook partitions, and n-cubes have a strange relationship with one another. This suggests a 



relationship between number theory and geometry which may be extendable to other regular and 
uniform polytopes. 

 

VIII. Extension to the Dirichlet Lambda function 

 

 

 Using a known relationship between the Riemann zeta function and the Dirichlet lambda 
function, we can extend this result to relate the internal k-angles of hypercubes to that function as 
well. The Dirichlet lambda function is defined as such: 

 

𝜆(𝑥) = ෎
1

(2𝑛 + 1)௫

ஶ

௡ୀ଴

 

 

It can be related to the Riemann zeta function by the following formula: 

 

𝜆(𝑣) =
2௩ − 1

2௩
ζ(𝑣) 

 

By substituting this relationship into the previous equation, we get the relationship between the 
internal k-angles of hypercubes in dimensions that are powers of 2 to the Dirichlet lambda 
function.  

 

𝐴𝑛𝑔(𝐶ଶ೙) =
∏ 𝐹ℷℷ

𝑏ଶ೙షమ
∗  𝜆(2௡ିଵ) ∗

2ଶ೙షభ

2ଷ(ଶ೙షభ)ିଶି௡ ∗ (2ଶ೙షభ
− 1) 

   

 

This can be simplified to the following formula: 

𝐴𝑛𝑔(𝐶ଶ೙) =
∏ 𝐹ℷℷ ∗ 𝜆(2௡ିଵ)

𝑏ଶ೙షమ ∗ 2ଶ೙ିଶି௡ ∗ (2ଶ೙షభ
− 1) 

 



The expression 2௡ − 2 − 𝑛 is the generating expression for the sequence 0, 3, 10, 25, 56, etc. 
The other term is a subset of the Mersenne numbers, as it is equal to 𝑀ଶ೙షభ  for dimension 2௡.  
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Calculations performed using Desmos Scientific, Number Empire, and Big Number Calculator: 

https://www.calculator.net/big-number-calculator.html 
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Calculator Screenshots for equivalencies between the two terms: 

 



 


